Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Nanotechnology ; 28(43): 435201, 2017 Oct 27.
Article in English | MEDLINE | ID: mdl-28829338

ABSTRACT

Single walled carbon nanotube/n-Si (SWCNT/n-Si) hetero-junctions have been obtained by depositing SWCNT ultra-thin films on the surface of an n-Si substrate by dry transfer method. The as obtained junctions are photo sensitive in the measured wavelength range (300-1000 nm) and show zero bias responsivity and detectivity values of the order of 1 A W-1 and 1014 Jones respectively, which are higher than those previously observed in carbon based devices. Moreover, under on-off light excitation, the junctions show response speed as fast as 1 µs or better and noise equivalent powers comparable to commercial Si photomultipliers. Current-voltage measurements in dark and under illumination suggest that the devices consist of Schottky and semiconductor/semiconductor junctions both contributing to the fast and high responses observed.

2.
Opt Express ; 16(2): 897-907, 2008 Jan 21.
Article in English | MEDLINE | ID: mdl-18542164

ABSTRACT

We report on the optical characterization of three-dimensional opal-like photonic crystals made by self-organized nanospheres of poly[styrene-(co-2-hydroxyethyl methacrylate)] having a face centred cubic (fcc) structure oriented along the [111] direction. A detailed optical characterization of the samples is presented using angle resolved reflection spectroscopy in specular geometry. The investigated energies are between a/lambda=0.5 and a/lambda=1.5 (where a is the lattice parameter and lambda is the light wavelength), a region in which both first and second-order Bragg diffraction are expected. Some interesting features as branching of the Bragg peak dispersion and high energy reflection peaks are revealed. We compare the experimental data with theoretical calculations using both Bragg diffraction and band structure approach. A comparison with recent results reported in the literature is also presented.


Subject(s)
Fiber Optic Technology/instrumentation , Models, Chemical , Nanospheres/chemistry , Polymers/chemistry , Refractometry/methods , Spectrum Analysis/methods , Computer Simulation , Materials Testing , Molecular Conformation , Nanospheres/ultrastructure , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL