Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 6(34): 22073-22102, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34497901

ABSTRACT

Following the identification of thieno[2,3-d]pyrimidine-based selective and potent inhibitors of MCL-1, we explored the effect of core swapping at different levels of advancement. During hit-to-lead optimization, X-ray-guided S-N replacement in the core provided a new vector, whose exploration led to the opening of the so-called deep-S2 pocket of MCL-1. Unfortunately, the occupation of this region led to a plateau in affinity and had to be abandoned. As the project approached selection of a clinical candidate, a series of core swap analogues were also prepared. The affinity and cellular activity of these compounds showed a significant dependence on the core structure. In certain cases, we also observed an increased and accelerated epimerization of the atropoisomers. The most potent core replacement analogues showed considerable in vivo PD response. One compound was progressed into efficacy studies and inhibited tumor growth.

2.
J Med Chem ; 63(22): 13762-13795, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33146521

ABSTRACT

Myeloid cell leukemia 1 (Mcl-1) has emerged as an attractive target for cancer therapy. It is an antiapoptotic member of the Bcl-2 family of proteins, whose upregulation in human cancers is associated with high tumor grade, poor survival, and resistance to chemotherapy. Here we report the discovery of our clinical candidate S64315, a selective small molecule inhibitor of Mcl-1. Starting from a fragment derived lead compound, we have conducted structure guided optimization that has led to a significant (3 log) improvement of target affinity as well as cellular potency. The presence of hindered rotation along a biaryl axis has conferred high selectivity to the compounds against other members of the Bcl-2 family. During optimization, we have also established predictive PD markers of Mcl-1 inhibition and achieved both efficient in vitro cell killing and tumor regression in Mcl-1 dependent cancer models. The preclinical candidate has drug-like properties that have enabled its development and entry into clinical trials.


Subject(s)
Antineoplastic Agents/chemistry , Drug Discovery/methods , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Myeloid Cell Leukemia Sequence 1 Protein/chemistry , Animals , Antineoplastic Agents/pharmacology , Dose-Response Relationship, Drug , Female , HCT116 Cells , HeLa Cells , Humans , Mice , Mice, SCID , Protein Structure, Secondary , Protein Structure, Tertiary
3.
Nature ; 538(7626): 477-482, 2016 10 27.
Article in English | MEDLINE | ID: mdl-27760111

ABSTRACT

Avoidance of apoptosis is critical for the development and sustained growth of tumours. The pro-survival protein myeloid cell leukemia 1 (MCL1) is overexpressed in many cancers, but the development of small molecules targeting this protein that are amenable for clinical testing has been challenging. Here we describe S63845, a small molecule that specifically binds with high affinity to the BH3-binding groove of MCL1. Our mechanistic studies demonstrate that S63845 potently kills MCL1-dependent cancer cells, including multiple myeloma, leukaemia and lymphoma cells, by activating the BAX/BAK-dependent mitochondrial apoptotic pathway. In vivo, S63845 shows potent anti-tumour activity with an acceptable safety margin as a single agent in several cancers. Moreover, MCL1 inhibition, either alone or in combination with other anti-cancer drugs, proved effective against several solid cancer-derived cell lines. These results point towards MCL1 as a target for the treatment of a wide range of tumours.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Models, Biological , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Neoplasms/drug therapy , Neoplasms/pathology , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Thiophenes/pharmacology , Thiophenes/therapeutic use , Animals , Antineoplastic Agents/administration & dosage , Apoptosis/drug effects , Cell Line, Tumor , Female , Humans , Leukemia/drug therapy , Leukemia/metabolism , Leukemia/pathology , Lymphoma/drug therapy , Lymphoma/metabolism , Lymphoma/pathology , Male , Mice , Models, Molecular , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Myeloid Cell Leukemia Sequence 1 Protein/chemistry , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Neoplasms/metabolism , Pyrimidines/administration & dosage , Thiophenes/administration & dosage , Xenograft Model Antitumor Assays , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2-Associated X Protein/metabolism
4.
Molecules ; 14(1): 279-88, 2009 Jan 08.
Article in English | MEDLINE | ID: mdl-19136916

ABSTRACT

There is an urgent need for novel and improved drugs against several tropical diseases caused by protozoa. The marine sponge (Agelas sp.) metabolite agelasine D, as well as other agelasine analogs and related structures were screened for inhibitory activity against Plasmodium falciparum, Leishmania infantum, Trypanosoma brucei and T. cruzi, as well as for toxicity against MRC-5 fibroblast cells. Many compounds displayed high general toxicity towards both the protozoa and MRC-5 cells. However, two compounds exhibited more selective inhibitory activity against L. infantum (IC(50) <0.5 microg/mL) while two others displayed IC(50) <1 microg/mL against T. cruzi in combination with relatively low toxicity against MRC-5 cells. According to criteria set up by the WHO Special Programme for Research & Training in Tropical Diseases (TDR), these compounds could be classified as hits for leishmaniasis and for Chagas disease, respectively. Identification of the hits as well as other SAR data from this initial screening will be valuable for design of more potent and selective potential drugs against these neglected tropical diseases.


Subject(s)
Leishmania donovani/drug effects , Purines/chemistry , Purines/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Agelas/chemistry , Animals , Chagas Disease/drug therapy , Leishmaniasis, Visceral/drug therapy , Plasmodium falciparum/drug effects , Purines/isolation & purification , Structure-Activity Relationship , Trypanocidal Agents/isolation & purification
5.
Arch Pharm (Weinheim) ; 340(12): 625-34, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17994607

ABSTRACT

Agelasines and agelasimines are antimicrobial and cytotoxic purine derivatives isolated from marine sponges (Agelas sp.). We have synthesized structurally simplified analogs of these natural products starting from beta-cyclocitral. The novel compounds were found to be strong inhibitors of a wide variety of pathogenic microorganisms (incl. Mycobacterium tuberculosis) as well as cancer cell lines. The biological activities were generally in the same range as those previously found for the structurally more complex agelasines and agelasimines isolated in small amounts from natural sources. We also report for the first time that agelasine and agelasimine analogs inhibit growth of protozoa (Acanthamoeba castellanii and Acanthamoeba polyphaga). Acanthamoeba keratitis is an increasingly common and severe corneal infection, closely associated with contact lens wear.


Subject(s)
Agelas/chemistry , Anti-Bacterial Agents/chemical synthesis , Antineoplastic Agents/chemical synthesis , Antiparasitic Agents/chemical synthesis , Purines/chemical synthesis , Terpenes/chemical synthesis , Acanthamoeba/drug effects , Adenine/analogs & derivatives , Adenine/chemistry , Aldehydes/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antiparasitic Agents/chemistry , Antiparasitic Agents/pharmacology , Cell Line, Tumor , Diterpenes/chemistry , Drug Screening Assays, Antitumor , Escherichia coli/drug effects , Guanidines/chemistry , Humans , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects , Naphthols/chemistry , Purines/chemistry , Purines/pharmacology , Staphylococcus aureus/drug effects , Stereoisomerism , Structure-Activity Relationship , Terpenes/chemistry , Terpenes/pharmacology
6.
Bioorg Med Chem Lett ; 14(15): 3953-6, 2004 Aug 02.
Article in English | MEDLINE | ID: mdl-15225705

ABSTRACT

A novel series of oxamides derived from indole-2-carboxamides was identified as potent NR2B selective NMDA receptor antagonists. Several members of this group showed good analgesic activity in the mouse formalin test.


Subject(s)
Indoles/chemical synthesis , Indoles/pharmacology , N-Methylaspartate/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Animals , Mice , Models, Molecular , Molecular Structure , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...