Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Article in English | MEDLINE | ID: mdl-38727660

ABSTRACT

BACKGROUND: Desmin (DES) pathogenic variants cause a small proportion of arrhythmogenic cardiomyopathy (ACM). Outcomes data on DES-related ACM are scarce. OBJECTIVES: This study sought to provide information on the clinical phenotype and outcomes of patients with ACM caused by pathogenic variants of the DES gene in a multicenter cohort. METHODS: We collected phenotypic and outcomes data from 16 families with DES-related ACM from 10 European centers. We assessed in vitro DES aggregates. Major cardiac events were compared to historical controls with lamin A/C truncating variant (LMNA-tv) and filament C truncating variant (FLNC-tv) ACM. RESULTS: Of 82 patients (54% males, median age: 36 years), 11 experienced sudden cardiac death (SCD) (n = 7) or heart failure death (HFd)/heart transplantation (HTx) (n = 4) before clinical evaluation. Among 68 survivors, 59 (86%) presented signs of cardiomyopathy, with left ventricular (LV) dominant (50%) or biventricular (34%) disease. Mean LV ejection fraction was 51% ± 13%; 36 of 53 had late gadolinium enhancement (ring-like pattern in 49%). During a median of 6.73 years (Q1-Q3: 3.55-9.52 years), the composite endpoint (sustained ventricular tachycardia, aborted SCD, implantable cardioverter-defibrillator therapy, SCD, HFd, and HTx) was achieved in 15 additional patients with HFd/HTx (n = 5) and SCD/aborted SCD/implantable cardioverter-defibrillator therapy/sustained ventricular tachycardia (n = 10). Male sex (P = 0.004), nonsustained ventricular tachycardia (P = 0.017) and LV ejection fraction ≤50% (P = 0.012) were associated with the composite endpoint. Males with DES variants had similar outcomes to historical FLNC-tv and LMNA-tv controls. However, females showed better outcomes than those with LMNA-tv. In vitro experiments showed the characteristic finding of DES aggregates in 7 of 12 variants. CONCLUSIONS: DES ACM is associated with poor outcomes which can be predicted with potentially successful treatments, underscoring the importance of familial evaluation and genetic studies to identify at risk individuals.

2.
Open Heart ; 11(1)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538064

ABSTRACT

OBJECTIVE: Transthyretin amyloid cardiomyopathy (ATTR-CM) is an infiltrative cardiac disorder caused by deposition of wild type or mutated transthyretin. As ATTR-CM is associated with conduction disease, we sought to determine its prevalence in patients with idiopathic high-degree atrioventricular (AV) block requiring permanent pacemaker (PPM) implantation. METHODS: Consecutive patients aged 70-85 years undergoing PPM implantation for idiopathic high-degree AV block between November 2019 and November 2021 were offered a 3,3-diphosphono-1,2-propanodicarboxylic acid (DPD) scan. Demographics, comorbidities, electrocardiographic and imaging data from the time of device implantation were retrospectively collected. RESULTS: 39 patients (79.5% male, mean (SD) age at device implantation 76.2 (2.9) years) had a DPD scan. 3/39 (7.7%, all male) had a result consistent with ATTR-CM (Perugini grade 2 or 3). Mean (SD) maximum wall thickness of those with a positive DPD scan was 19.0 mm (3.6 mm) vs 11.4 mm (2.7 mm) in those with a negative scan (p=0.06). All patients diagnosed with ATTR-CM had spinal canal stenosis and two had carpal tunnel syndrome. CONCLUSIONS: ATTR-CM should be considered in older patients requiring permanent pacing for high-degree AV block, particularly in the presence of left ventricular hypertrophy, carpal tunnel syndrome or spinal canal stenosis.


Subject(s)
Amyloidosis , Atrioventricular Block , Carpal Tunnel Syndrome , Humans , Male , Aged , Female , Atrioventricular Block/diagnosis , Atrioventricular Block/epidemiology , Atrioventricular Block/therapy , Retrospective Studies , Prevalence , Prealbumin , Carpal Tunnel Syndrome/complications , Constriction, Pathologic/complications
3.
Circ Genom Precis Med ; 17(2): e004301, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38415367

ABSTRACT

Dilated cardiomyopathy (DCM) is a common heart muscle disorder of nonischemic etiology associated with heart failure development and the risk of malignant ventricular arrhythmias and sudden cardiac death. A tailored approach to risk stratification and prevention of sudden cardiac death is required in genetic DCM given its variable presentation and phenotypic severity. Currently, advances in cardiogenetics have shed light on disease mechanisms, the complex genetic architecture of DCM, polygenic contributors to disease susceptibility and the role of environmental triggers. Parallel advances in imaging have also enhanced disease recognition and the identification of the wide spectrum of phenotypes falling under the DCM umbrella. Genotype-phenotype associations have been also established for specific subtypes of DCM, such as DSP (desmoplakin) or FLNC (filamin-C) cardiomyopathy but overall, they remain elusive and not readily identifiable. Also, despite the accumulated knowledge on disease mechanisms, certain aspects remain still unclear, such as which patients with DCM are at risk for disease progression or remission after treatment. Imagenetics, that is, the combination of imaging and genetics, is expected to further advance research in the field and contribute to precision medicine in DCM management and treatment. In the present article, we review the existing literature in the field, summarize the established knowledge and emerging data on the value of genetics and imaging in establishing genotype-phenotype associations in DCM and in clinical decision making for DCM patients.


Subject(s)
Cardiomyopathy, Dilated , Humans , Cardiomyopathy, Dilated/diagnosis , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/therapy , Precision Medicine/methods , Death, Sudden, Cardiac/etiology , Arrhythmias, Cardiac/genetics , Genetic Association Studies
4.
Heart ; 110(3): 156-162, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-37433658

ABSTRACT

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a disease characterised by fibrofatty replacement of the ventricular myocardium due to specific mutations, leading to ventricular arrhythmias and sudden cardiac death. Treating this condition can be challenging due to progressive fibrosis, phenotypic variations and small patient cohorts limiting the feasibility of conducting meaningful clinical trials. Although widely used, the evidence base for anti-arrhythmic drugs is limited. Beta-blockers are theoretically sound, yet their efficacy in reducing arrhythmic risk is not robust. Additionally, the impact of sotalol and amiodarone is inconsistent with studies reporting contradictory results. Emerging evidence suggests that combining flecainide and bisoprolol may be efficacious.Radiofrequency ablation has shown some potential in disrupting ventricular tachycardia circuits, with combined endo and epicardial ablation yielding better results which could be considered at the index procedure. In addition, stereotactic radiotherapy may be a future option that can decrease arrhythmias beyond simple scar formation by altering levels of Nav1.5 channels, Connexin 43 and Wnt signalling, potentially modifying myocardial fibrosis.Future therapies, such as adenoviruses and GSk3b modulation, are still in early-stage research. While implantable cardioverter-defibrillator implantation is a key intervention for reducing arrhythmic death, the risks of inappropriate shocks and device complications must be carefully considered.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Defibrillators, Implantable , Tachycardia, Ventricular , Humans , Arrhythmogenic Right Ventricular Dysplasia/diagnosis , Arrhythmogenic Right Ventricular Dysplasia/therapy , Arrhythmogenic Right Ventricular Dysplasia/complications , Arrhythmias, Cardiac/complications , Anti-Arrhythmia Agents/therapeutic use , Death, Sudden, Cardiac/etiology , Death, Sudden, Cardiac/prevention & control , Sotalol , Tachycardia, Ventricular/diagnosis , Tachycardia, Ventricular/etiology , Tachycardia, Ventricular/therapy , Defibrillators, Implantable/adverse effects
5.
Europace ; 25(11)2023 11 02.
Article in English | MEDLINE | ID: mdl-37995093

ABSTRACT

AIMS: The validated HCM Risk-Kids model provides accurate individualized estimates of sudden cardiac death risk in children with hypertrophic cardiomyopathy (HCM). A second validated model, PRIMaCY, also provides individualized estimates of risk, but its performance and clinical impact has not been independently investigated. The aim of this study was to investigate the clinical impact of using the PRIMaCY sudden cardiac death (SCD) risk model in childhood HCM. METHODS AND RESULTS: The estimated 5-year SCD risk was calculated for children meeting diagnostic criteria for HCM in a large single-centre cohort using PRIMaCY (clinical and genetic) and HCM Risk-Kids model, and model performance was assessed. Three hundred one patients [median age 10 (interquartile range 4-14)] were followed up for an average of 4.9 (±3.8) years, during which 30 (10.0%) reached the SCD or equivalent event endpoint. Harrell's C-statistic for the clinical and genetic models was 0.66 [95% confidence interval (CI) 0.52-0.8] and 0.66 (95% CI 0.54-0.80) with a calibration slope of 0.19 (95% CI 0.04-0.54) and 0.26 (95% CI -0.03-0.62), respectively. The number needed to treat to potentially treat one life-threatening arrhythmia for the PRIMaCY clinical, PRIMaCY genetic, and HCM Risk-Kids models was 13.7, 14.5, and 9.4, respectively. CONCLUSION: Although PRIMaCY has a similar discriminatory ability to that reported for HCM Risk-Kids, estimated risk estimates did not correlate well with observed risk. A higher proportion of patients met implantable cardioverter-defibrillator thresholds using PRIMaCY model compared with HCM Risk-Kids. This has important clinical implications as these patients will be exposed to a lifetime risk of complications and inappropriate therapies.


Subject(s)
Cardiomyopathy, Hypertrophic , Defibrillators, Implantable , Child , Humans , Death, Sudden, Cardiac/epidemiology , Death, Sudden, Cardiac/etiology , Death, Sudden, Cardiac/prevention & control , Cardiomyopathy, Hypertrophic/complications , Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/therapy
6.
Europace ; 25(11)2023 11 02.
Article in English | MEDLINE | ID: mdl-37935403

ABSTRACT

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a heritable cardiomyopathy characterized by a predominantly arrhythmic presentation. It represents the leading cause of sudden cardiac death (SCD) among athletes and poses a significant morbidity threat in the general population. As a causative treatment for ARVC is still not available, the placement of an implantable cardioverter defibrillator represents the current cornerstone for SCD prevention in this setting. Thanks to international ARVC-dedicated efforts, significant steps have been achieved in recent years towards an individualized, patient-centred risk stratification approach. A novel risk calculator algorithm estimating the 5-year risk of arrhythmias of patients with ARVC has been introduced in clinical practice and subsequently validated. The purpose of this article is to summarize the body of evidence that has allowed the development of this tool and to discuss the best way to implement its use in the care of an individual patient.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Defibrillators, Implantable , Humans , Risk Factors , Arrhythmogenic Right Ventricular Dysplasia/complications , Arrhythmogenic Right Ventricular Dysplasia/diagnosis , Arrhythmogenic Right Ventricular Dysplasia/therapy , Death, Sudden, Cardiac/etiology , Death, Sudden, Cardiac/prevention & control , Death, Sudden, Cardiac/epidemiology , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/therapy , Arrhythmias, Cardiac/complications , Defibrillators, Implantable/adverse effects , Risk Assessment
8.
J Am Heart Assoc ; 12(19): e030478, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37750561

ABSTRACT

Background Sarcoidosis is an inflammatory, granulomatous disease of unknown cause affecting multiple organs, including the heart. Untreated, unresolved granulomatous inflammation can lead to cardiac fibrosis, arrhythmias, and eventually heart failure. Here we characterize the cardiac phenotype of mice with chronic activation of mammalian target of rapamycin (mTOR) complex 1 signaling in myeloid cells known to cause spontaneous pulmonary sarcoid-like granulomas. Methods and Results The cardiac phenotype of mice with conditional deletion of the tuberous sclerosis 2 (TSC2) gene in CD11c+ cells (TSC2fl/flCD11c-Cre; termed TSC2KO) and controls (TSC2fl/fl) was determined by histological and immunological stains. Transthoracic echocardiography and invasive hemodynamic measurements were performed to assess myocardial function. TSC2KO animals were treated with either everolimus, an mTOR inhibitor, or Bay11-7082, a nuclear factor-kB inhibitor. Activation of mTOR signaling was evaluated on myocardial samples from sudden cardiac death victims with a postmortem diagnosis of cardiac sarcoidosis. Chronic activation of mTORC1 signaling in CD11c+ cells was sufficient to initiate progressive accumulation of granulomatous infiltrates in the heart, which was associated with increased fibrosis, impaired cardiac function, decreased plakoglobin expression, and abnormal connexin 43 distribution, a substrate for life-threatening arrhythmias. Mice treated with the mTOR inhibitor everolimus resolved granulomatous infiltrates, prevented fibrosis, and improved cardiac dysfunction. In line, activation of mTOR signaling in CD68+ macrophages was detected in the hearts of sudden cardiac death victims who suffered from cardiac sarcoidosis. Conclusions To our best knowledge this is the first animal model of cardiac sarcoidosis that recapitulates major pathological hallmarks of human disease. mTOR inhibition may be a therapeutic option for patients with cardiac sarcoidosis.


Subject(s)
Myocarditis , Sarcoidosis , Humans , Mice , Animals , Mechanistic Target of Rapamycin Complex 1 , Everolimus , Tumor Suppressor Proteins/genetics , Tuberous Sclerosis Complex 2 Protein , Multiprotein Complexes/metabolism , TOR Serine-Threonine Kinases/metabolism , Sirolimus/pharmacology , Sarcoidosis/drug therapy , Disease Models, Animal , Death, Sudden, Cardiac , Fibrosis , Mammals/metabolism
10.
Eur Heart J ; 44(48): 5064-5073, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37639473

ABSTRACT

BACKGROUND AND AIMS: Emery-Dreifuss muscular dystrophy (EDMD) is caused by variants in EMD (EDMD1) and LMNA (EDMD2). Cardiac conduction defects and atrial arrhythmia are common to both, but LMNA variants also cause end-stage heart failure (ESHF) and malignant ventricular arrhythmia (MVA). This study aimed to better characterize the cardiac complications of EMD variants. METHODS: Consecutively referred EMD variant-carriers were retrospectively recruited from 12 international cardiomyopathy units. MVA and ESHF incidences in male and female variant-carriers were determined. Male EMD variant-carriers with a cardiac phenotype at baseline (EMDCARDIAC) were compared with consecutively recruited male LMNA variant-carriers with a cardiac phenotype at baseline (LMNACARDIAC). RESULTS: Longitudinal follow-up data were available for 38 male and 21 female EMD variant-carriers [mean (SD) ages 33.4 (13.3) and 43.3 (16.8) years, respectively]. Nine (23.7%) males developed MVA and five (13.2%) developed ESHF during a median (inter-quartile range) follow-up of 65.0 (24.3-109.5) months. No female EMD variant-carrier had MVA or ESHF, but nine (42.8%) developed a cardiac phenotype at a median (inter-quartile range) age of 58.6 (53.2-60.4) years. Incidence rates for MVA were similar for EMDCARDIAC and LMNACARDIAC (4.8 and 6.6 per 100 person-years, respectively; log-rank P = .49). Incidence rates for ESHF were 2.4 and 5.9 per 100 person-years for EMDCARDIAC and LMNACARDIAC, respectively (log-rank P = .09). CONCLUSIONS: Male EMD variant-carriers have a risk of progressive heart failure and ventricular arrhythmias similar to that of male LMNA variant-carriers. Early implantable cardioverter defibrillator implantation and heart failure drug therapy should be considered in male EMD variant-carriers with cardiac disease.


Subject(s)
Heart Diseases , Heart Failure , Muscular Dystrophy, Emery-Dreifuss , X-Linked Emery-Dreifuss Muscular Dystrophy , Humans , Male , Female , Middle Aged , X-Linked Emery-Dreifuss Muscular Dystrophy/complications , Retrospective Studies , Arrhythmias, Cardiac/epidemiology , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/complications , Heart Diseases/complications , Muscular Dystrophy, Emery-Dreifuss/complications , Muscular Dystrophy, Emery-Dreifuss/genetics , Muscular Dystrophy, Emery-Dreifuss/pathology , Heart Failure/etiology , Heart Failure/complications , Mutation
11.
Circ Genom Precis Med ; 16(5): 434-441, 2023 10.
Article in English | MEDLINE | ID: mdl-37593875

ABSTRACT

BACKGROUND: Variants in RBM20 are reported in 2% to 6% of familial cases of dilated cardiomyopathy and may be associated with fatal ventricular arrhythmia and rapid heart failure progression. We sought to determine the risk of adverse events in RBM20 variant carriers and the impact of sex on outcomes. METHODS: Consecutive probands and relatives carrying RBM20 variants were retrospectively recruited from 12 cardiomyopathy units. The primary end point was a composite of malignant ventricular arrhythmia (MVA) and end-stage heart failure (ESHF). MVA and ESHF end points were also analyzed separately and men and women compared. Left ventricular ejection fraction (LVEF) contemporary to MVA was examined. RBM20 variant carriers with left ventricular systolic dysfunction (RBM20LVSD) were compared with variant-elusive patients with idiopathic left ventricular systolic dysfunction. RESULTS: Longitudinal follow-up data were available for 143 RBM20 variant carriers (71 men; median age, 35.5 years); 7 of 143 had an MVA event at baseline. Thirty of 136 without baseline MVA (22.0%) reached the primary end point, and 16 of 136 (11.8%) had new MVA with no significant difference between men and women (log-rank P=0.07 and P=0.98, respectively). Twenty of 143 (14.0%) developed ESHF (17 men and 3 women; log-rank P<0.001). Four of 10 variant carriers with available LVEF contemporary to MVA had an LVEF >35%. At 5 years, 15 of 67 (22.4%) RBM20LVSD versus 7 of 197 (3.6%) patients with idiopathic left ventricular systolic dysfunction had reached the primary end point (log-rank P<0.001). RBM20 variant carriage conferred a 6.0-fold increase in risk of the primary end point. CONCLUSIONS: RBM20 variants are associated with a high risk of MVA and ESHF compared with idiopathic left ventricular systolic dysfunction. The risk of MVA in male and female RBM20 variant carriers is similar, but male sex is strongly associated with ESHF.


Subject(s)
Heart Failure , Ventricular Dysfunction, Left , Adult , Female , Humans , Male , Arrhythmias, Cardiac , Heart Failure/genetics , Retrospective Studies , Stroke Volume , Ventricular Dysfunction, Left/genetics , Ventricular Function, Left
12.
Int J Cardiol ; 391: 131275, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37604285
13.
J Cardiovasc Transl Res ; 16(6): 1276-1286, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37418234

ABSTRACT

The presence of multiple pathogenic variants in desmosomal genes (DSC2, DSG2, DSP, JUP, and PKP2) in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) has been linked to a severe phenotype. However, the pathogenicity of variants is reclassified frequently, which may result in a changed clinical risk prediction. Here, we present the collection, reclassification, and clinical outcome correlation for the largest series of ARVC patients carrying multiple desmosomal pathogenic variants to date (n = 331). After reclassification, only 29% of patients remained carriers of two (likely) pathogenic variants. They reached the composite endpoint (ventricular arrhythmias, heart failure, and death) significantly earlier than patients with one or no remaining reclassified variant (hazard ratios of 1.9 and 1.8, respectively). Periodic reclassification of variants contributes to more accurate risk stratification and subsequent clinical management strategy. Graphical Abstract.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Humans , Arrhythmogenic Right Ventricular Dysplasia/diagnosis , Arrhythmogenic Right Ventricular Dysplasia/genetics , Plakophilins/genetics , Phenotype , Arrhythmias, Cardiac , Mutation
14.
Circulation ; 146(25): 1930-1945, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36417924

ABSTRACT

BACKGROUND: Autoimmunity is increasingly recognized as a key contributing factor in heart muscle diseases. The functional features of cardiac autoimmunity in humans remain undefined because of the challenge of studying immune responses in situ. We previously described a subset of c-mesenchymal epithelial transition factor (c-Met)-expressing (c-Met+) memory T lymphocytes that preferentially migrate to cardiac tissue in mice and humans. METHODS: In-depth phenotyping of peripheral blood T cells, including c-Met+ T cells, was undertaken in groups of patients with inflammatory and noninflammatory cardiomyopathies, patients with noncardiac autoimmunity, and healthy controls. Validation studies were carried out using human cardiac tissue and in an experimental model of cardiac inflammation. RESULTS: We show that c-Met+ T cells are selectively increased in the circulation and in the myocardium of patients with inflammatory cardiomyopathies. The phenotype and function of c-Met+ T cells are distinct from those of c-Met-negative (c-Met-) T cells, including preferential proliferation to cardiac myosin and coproduction of multiple cytokines (interleukin-4, interleukin-17, and interleukin-22). Furthermore, circulating c-Met+ T cell subpopulations in different heart muscle diseases identify distinct and overlapping mechanisms of heart inflammation. In experimental autoimmune myocarditis, elevations in autoantigen-specific c-Met+ T cells in peripheral blood mark the loss of immune tolerance to the heart. Disease development can be halted by pharmacologic c-Met inhibition, indicating a causative role for c-Met+ T cells. CONCLUSIONS: Our study demonstrates that the detection of circulating c-Met+ T cells may have use in the diagnosis and monitoring of adaptive cardiac inflammation and definition of new targets for therapeutic intervention when cardiac autoimmunity causes or contributes to progressive cardiac injury.


Subject(s)
Autoimmune Diseases , Cardiomyopathies , Myocarditis , Humans , Mice , Animals , Autoimmunity , Memory T Cells , Myocarditis/etiology , Myocardium , Cardiomyopathies/complications , Cardiac Myosins , Inflammation/complications
15.
Eur Heart J ; 43(32): 3053-3067, 2022 08 21.
Article in English | MEDLINE | ID: mdl-35766183

ABSTRACT

AIMS: To study the impact of genotype on the performance of the 2019 risk model for arrhythmogenic right ventricular cardiomyopathy (ARVC). METHODS AND RESULTS: The study cohort comprised 554 patients with a definite diagnosis of ARVC and no history of sustained ventricular arrhythmia (VA). During a median follow-up of 6.0 (3.1,12.5) years, 100 patients (18%) experienced the primary VA outcome (sustained ventricular tachycardia, appropriate implantable cardioverter defibrillator intervention, aborted sudden cardiac arrest, or sudden cardiac death) corresponding to an annual event rate of 2.6% [95% confidence interval (CI) 1.9-3.3]. Risk estimates for VA using the 2019 ARVC risk model showed reasonable discriminative ability but with overestimation of risk. The ARVC risk model was compared in four gene groups: PKP2 (n = 118, 21%); desmoplakin (DSP) (n = 79, 14%); other desmosomal (n = 59, 11%); and gene elusive (n = 160, 29%). Discrimination and calibration were highest for PKP2 and lowest for the gene-elusive group. Univariable analyses revealed the variable performance of individual clinical risk markers in the different gene groups, e.g. right ventricular dimensions and systolic function are significant risk markers in PKP2 but not in DSP patients and the opposite is true for left ventricular systolic function. CONCLUSION: The 2019 ARVC risk model performs reasonably well in gene-positive ARVC (particularly for PKP2) but is more limited in gene-elusive patients. Genotype should be included in future risk models for ARVC.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Arrhythmias, Cardiac , Arrhythmogenic Right Ventricular Dysplasia/genetics , Death, Sudden, Cardiac/epidemiology , Death, Sudden, Cardiac/etiology , Death, Sudden, Cardiac/prevention & control , Genotype , Humans , Risk Assessment , Risk Factors
16.
Europace ; 24(2): 285-295, 2022 02 02.
Article in English | MEDLINE | ID: mdl-34491328

ABSTRACT

AIMS: In arrhythmogenic cardiomyopathy (ACM), sustained ventricular tachycardia (VT) typically displays a left bundle branch block (LBBB) morphology while a right bundle branch block (RBBB) morphology is rare. The present study assesses the VT morphology in ACM patients with sustained VT and their clinical and genetic characteristics. METHODS AND RESULTS: Twenty-six centres from 11 European countries provided information on 954 ACM patients who had ≥1 episode of sustained VT spontaneously documented during patients' clinical course. Arrhythmogenic cardiomyopathy was defined according to the 2010 Task Force Criteria, and VT morphology according to the QRS pattern in V1. Overall, 882 (92.5%) patients displayed LBBB-VT alone and 72 (7.5%) RBBB-VT [alone in 42 (4.4%) or in combination with LBBB-VT in 30 (3.1%)]. Male sex prevalence was 79.3%, 88.1%, and 56.7% in the LBBB-VT, RBBB-VT, and LBBB + RBBB-VT groups, respectively (P = 0.007). First RBBB-VT occurred 5 years after the first LBBB-VT (46.5 ± 14.4 vs 41.1 ± 15.8 years, P = 0.011). An implanted cardioverter-defibrillator was more frequently implanted in the RBBB-VT (92.9%) and the LBBB + RBBB-VT groups (90%) than in the LBBB-VT group (68.1%) (P < 0.001). Mutations in PKP2 predominated in the LBBB-VT (65.2%) and the LBBB + RBBB-VT (41.7%) groups while DSP mutations predominated in the RBBB-VT group (45.5%). By multivariable analysis, female sex was associated with LBBB + RBBB-VT (P = 0.011) while DSP mutations were associated with RBBB-VT (P < 0.001). After a median follow-up of 103 (51-185) months, death occurred in 106 (11.1%) patients with no intergroup difference (P = 0.176). CONCLUSION: RBBB-VT accounts for a significant proportion of sustained VTs in ACM. Sex and type of pathogenic mutations were associated with VT type, female sex with LBBB + RBBB-VT, and DSP mutation with RBBB-VT.


Subject(s)
Cardiomyopathies , Tachycardia, Ventricular , Bundle-Branch Block/diagnosis , Bundle-Branch Block/epidemiology , Bundle-Branch Block/therapy , Cardiomyopathies/complications , Cardiomyopathies/epidemiology , Cardiomyopathies/genetics , Electrocardiography , Female , Humans , Male , Prevalence , Tachycardia, Ventricular/diagnosis , Tachycardia, Ventricular/epidemiology , Tachycardia, Ventricular/genetics
17.
Heart Fail Clin ; 18(1): 89-99, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34776086

ABSTRACT

Naxos disease is a recessively inherited pattern of arrhythmogenic cardiomyopathy with palmoplantar keratoderma and woolly hair. The causative mutation identified in plakoglobin protein gene indicated a potential role of the desmosomal protein complex as culprit for cardiomyopathy. In the context of a family, the early evident cutaneous features may serve as a clinical screening tool to spot arrhythmogenic cardiomyopathy in subclinical stage. "Myocarditis-like episodes" may step up the disease evolution or mark a transition from concealed to symptomatic cardiomyopathy phase. Arrhythmogenic cardiomyopathy in Naxos disease shows increased penetrance and phenotypic expression but its arrhythmic risk is analogous to dominant forms.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Cardiomyopathies , Hair Diseases , Keratoderma, Palmoplantar , Arrhythmogenic Right Ventricular Dysplasia/diagnosis , Arrhythmogenic Right Ventricular Dysplasia/genetics , Cardiomyopathies/diagnosis , Cardiomyopathies/genetics , Humans , Keratoderma, Palmoplantar/diagnosis , Keratoderma, Palmoplantar/genetics
18.
Bioengineering (Basel) ; 8(11)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34821748

ABSTRACT

The rapid evolution of regenerative medicine and its associated scientific fields, such as tissue engineering, has provided great promise for multiple applications where replacement and regeneration of damaged or lost tissue is required. In order to evaluate and optimise the tissue engineering techniques, visualisation of the material of interest is crucial. This includes monitoring of the cellular behaviour, extracellular matrix composition, scaffold structure, and other crucial elements of biomaterials. Non-invasive visualisation of artificial tissues is important at all stages of development and clinical translation. A variety of preclinical and clinical imaging methods-including confocal multiphoton microscopy, optical coherence tomography, magnetic resonance imaging (MRI), and computed tomography (CT)-have been used for the evaluation of artificial tissues. This review attempts to present the imaging methods available to assess the composition and quality of 3D microenvironments, as well as their integration with human tissues once implanted in the human body. The review provides tissue-specific application examples to demonstrate the applicability of such methods on cardiovascular, musculoskeletal, and neural tissue engineering.

20.
Genet Med ; 23(10): 1961-1968, 2021 10.
Article in English | MEDLINE | ID: mdl-34120153

ABSTRACT

PURPOSE: The genetic architecture of Plakophilin 2 (PKP2) cardiomyopathy can inform our understanding of its variant pathogenicity and protein function. METHODS: We assess the gene-wide and regional association of truncating and missense variants in PKP2 with arrhythmogenic cardiomyopathy (ACM), and arrhythmogenic right ventricular cardiomyopathy (ARVC) specifically. A discovery data set compares genetic testing requisitions to gnomAD. Validation is performed in a rigorously phenotyped definite ARVC cohort and non-ACM individuals in the Geisinger MyCode cohort. RESULTS: The etiologic fraction (EF) of ACM-related diagnoses from truncating variants in PKP2 is significant (0.85 [0.80,0.88], p < 2 × 10-16), increases for ARVC specifically (EF = 0.96 [0.94,0.97], p < 2 × 10-16), and is highest in definite ARVC versus non-ACM individuals (EF = 1.00 [1.00,1.00], p < 2 × 10-16). Regions of missense variation enriched for ACM probands include known functional domains and the C-terminus, which was not previously known to contain a functional domain. No regional enrichment was identified for truncating variants. CONCLUSION: This multicohort evaluation of the genetic architecture of PKP2 demonstrates the specificity of PKP2 truncating variants for ARVC within the ACM disease spectrum. We identify the PKP2 C-terminus as a potential functional domain and find that truncating variants likely cause disease irrespective of transcript position.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Cardiomyopathies , Plakophilins , Arrhythmogenic Right Ventricular Dysplasia/genetics , Genetic Testing , Humans , Phenotype , Plakophilins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...