Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Cardiol Rep ; 26(7): 661-667, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38713362

ABSTRACT

PURPOSE OF REVIEW: To present an abridged overview of the literature and pathophysiological background of adjunct interventional left ventricular unloading strategies during veno-arterial extracorporeal membrane oxygenation (V-A ECMO). From a clinical perspective, the mechanistic complexity of such combined mechanical circulatory support often requires in-depth physiological reasoning at the bedside, which remains a cornerstone of daily practice for optimal patient-specific V-A ECMO care. RECENT FINDINGS: Recent conventional clinical trials have not convincingly shown the superiority of V-A ECMO in acute myocardial infarction complicated by cardiogenic shock as compared with medical therapy alone. Though, it has repeatedly been reported that the addition of interventional left ventricular unloading to V-A ECMO may improve clinical outcome. Novel approaches such as registry-based adaptive platform trials and computational physiological modeling are now introduced to inform clinicians by aiming to better account for patient-specific variation and complexity inherent to V-A ECMO and have raised a widespread interest. To provide modern high-quality V-A ECMO care, it remains essential to understand the patient's pathophysiology and the intricate interaction of an individual patient with extracorporeal circulatory support devices. Innovative clinical trial design and computational modeling approaches carry great potential towards advanced clinical decision support in ECMO and related critical care.


Subject(s)
Extracorporeal Membrane Oxygenation , Shock, Cardiogenic , Extracorporeal Membrane Oxygenation/methods , Humans , Shock, Cardiogenic/therapy , Shock, Cardiogenic/physiopathology , Heart-Assist Devices , Myocardial Infarction/physiopathology , Myocardial Infarction/therapy , Ventricular Function, Left/physiology , Heart Ventricles/physiopathology
2.
Transplant Proc ; 53(1): 457-465, 2021.
Article in English | MEDLINE | ID: mdl-33339649

ABSTRACT

Ex vivo lung perfusion (EVLP) allows the ventilation and perfusion of lungs to evaluate their viability for transplantation. The aim of this study is to compare the mechanical, morphologic and functional properties of lungs during EVLP with values obtained in vivo to guide a safe mechanical ventilation strategy. Lungs from 5 healthy pigs were studied in vivo and during 4 hours of EVLP. Lung compliance, airway resistance, gas exchange, and hemodynamic parameters were collected at positive end-expiratory pressure (PEEP) of 5 cm H2O. Computed tomography was performed at PEEP 0, PEEP 5, and total lung capacity (TLC). Lung pressure-volume (PV) curves were performed from PEEP 0 to TLC. Lung compliance decreased during EVLP (53 ± 5 mL/cm H2O vs 29 ± 7 mL/cm H2O, P < .05), and the PV curve showed a lower inflection point. Gas content (528 ± 118 mL vs 892 ± 402 mL at PEEP 0) and airway resistance (25 ± 5 vs 44 ± 9 cmH2O/L∗s-1, P < .05) were higher during EVLP. Alveolar dead space (5% ± 2% vs 17% ± 6%, P < .05) and intrapulmonary shunt (9% ± 2% vs 28% ± 13%, P < .05) increased ex vivo compared to in vivo, while the partial pressure of oxygen to inspired oxygen fraction ratio (PO2/FiO2) did not differ (468 ± 52 mm Hg vs 536 ± 14 mm Hg). In conclusion, during EVLP lungs show signs of air trapping and bronchoconstriction, resulting in low compliance and increased alveolar dead space. Intrapulmonary shunt is high despite oxygenation levels acceptable for transplantation.


Subject(s)
Lung , Organ Preservation/methods , Perfusion/instrumentation , Perfusion/methods , Tissue and Organ Harvesting/methods , Animals , Female , Lung/physiopathology , Lung Compliance/physiology , Lung Transplantation/methods , Models, Animal , Organ Preservation/instrumentation , Respiratory Mechanics/physiology , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...