Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 12: 1282867, 2024.
Article in English | MEDLINE | ID: mdl-38333083

ABSTRACT

Introduction: Manual handling personnel and those performing manual handling tasks in non-traditional manual handling industries continue to suffer debilitating and costly workplace injuries. Smart assistive devices are one solution to reducing musculoskeletal back injuries. Devices that provide targeted assistance need to be able to predict when and where to provide augmentation via predictive algorithms trained on functional datasets. The aim of this study was to describe how an increase in load impacts spine kinematics during a ground-to-platform manual handling task. Methods: Twenty-nine participants performed ground-to-platform lifts for six standardised loading conditions (50%, 60%, 70%, 80%, 90%, and 100% of maximum lift capacity). Six thoracic and lumbar spine segments were measured using inertial measurement units that were processed using an attitude-heading-reference filter and normalised to the duration of the lift. The lift was divided into four phases weight-acceptance, standing, lift-to-height and place-on-platform. Statistical significance of sagittal angles from the six spine segments were identified through statistical parametric mapping one-way analysis of variance with repeated measures and post hoc paired t-tests. Results: Two regions of interest were identified during a period of peak flexion and a period of peak extension. There was a significant increase in spine range of motion and peak extension angle for all spine segments when the load conditions were increased (p < 0.001). There was a decrease in spine angles (more flexion) during the weight acceptance to standing phase at the upper thoracic to upper lumbar spine segments for some condition comparisons. A significant increase in spine angles (more extension) during the place-on-platform phase was seen in all spine segments when comparing heavy loads (>80% maximum lift capacity, inclusive) to light loads (<80% maximum lift capacity) (p < 0.001). Discussion: The 50%-70% maximum lift capacity conditions being significantly different from heavier load conditions is representative that the kinematics of a lift do change consistently when a participant's load is increased. The understanding of how changes in loading are reflected in spine angles could inform the design of targeted assistance devices that can predict where and when in a task assistance may be needed, possibly reducing instances of back injuries in manual handling personnel.

2.
Hum Factors ; 64(3): 527-554, 2022 05.
Article in English | MEDLINE | ID: mdl-33203237

ABSTRACT

OBJECTIVE: The aim of this review was to determine how exoskeletons could assist Australian Defence Force personnel with manual handling tasks. BACKGROUND: Musculoskeletal injuries due to manual handling are physically damaging to personnel and financially costly to the Australian Defence Force. Exoskeletons may minimize injury risk by supporting, augmenting, and/or amplifying the user's physical abilities. Exoskeletons are therefore of interest in determining how they could support the unique needs of military manual handling personnel. METHOD: Industrial and military exoskeleton studies from 1990 to 2019 were identified in the literature. This included 67 unique exoskeletons, for which Information about their current state of development was tabulated. RESULTS: Exoskeleton support of manual handling tasks is largely through squat/deadlift (lower limb) systems (64%), with the proposed use case for these being load carrying (42%) and 78% of exoskeletons being active. Human-exoskeleton analysis was the most prevalent form of evaluation (68%) with reported reductions in back muscle activation of 15%-54%. CONCLUSION: The high frequency of citations of exoskeletons targeting load carrying reflects the need for devices that can support manual handling workers. Exoskeleton evaluation procedures varied across studies making comparisons difficult. The unique considerations for military applications, such as heavy external loads and load asymmetry, suggest that a significant adaptation to current technology or customized military-specific devices would be required for the introduction of exoskeletons into a military setting. APPLICATION: Exoskeletons in the literature and their potential to be adapted for application to military manual handling tasks are presented.


Subject(s)
Exoskeleton Device , Military Personnel , Musculoskeletal System/injuries , Wounds and Injuries/prevention & control , Australia , Humans , Posture
SELECTION OF CITATIONS
SEARCH DETAIL
...