Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 15: 1342404, 2024.
Article in English | MEDLINE | ID: mdl-38469298

ABSTRACT

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD), previously non-alcoholic fatty liver disease (NAFLD), is a leading cause of chronic liver disease worldwide. In 20%-30% of MASLD patients, the disease progresses to metabolic dysfunction-associated steatohepatitis (MASH, previously NASH) which can lead to fibrosis/cirrhosis, liver failure as well as hepatocellular carcinoma (HCC). Here we investigated the role of histidine-rich glycoprotein (HRG), a plasma protein produced by hepatocytes, in MASLD/MASH progression and HCC development. Methods: The role of HRG was investigated by morphological, cellular, and molecular biology approaches in (a) HRG knock-out mice (HRG-/- mice) fed on a CDAA dietary protocol or a MASH related diethyl-nitrosamine/CDAA protocol of hepatocarcinogenesis, (b) THP1 monocytic cells treated with purified HRG, and (c) well-characterized cohorts of MASLD patients with or without HCC. Results: In non-neoplastic settings, murine and clinical data indicate that HRG increases significantly in parallel with disease progression. In particular, in MASLD/MASH patients, higher levels of HRG plasma levels were detected in subjects with extensive fibrosis/cirrhosis. When submitted to the pro-carcinogenic protocol, HRG-/- mice showed a significant decrease in the volume and number of HCC nodules in relation to decreased infiltration of macrophages producing pro-inflammatory mediators, including IL-1ß, IL-6, IL-12, IL-10, and VEGF as well as impaired angiogenesis. The histopathological analysis (H-score) of MASH-related HCC indicate that the higher HRG positivity in peritumoral tissue significantly correlates with a lower overall patient survival and an increased recurrence. Moreover, a significant increase in HRG plasma levels was detected in cirrhotic (F4) patients and in patients carrying HCC vs. F0/F1 patients. Conclusion: Murine and clinical data indicate that HRG plays a significant role in MASLD/MASH progression to HCC by supporting a specific population of tumor-associated macrophages with pro-inflammatory response and pro-angiogenetic capabilities which critically support cancer cell survival. Furthermore, our data suggest HRG as a possible prognostic predictor in HCC patients with MASLD/MASH-related HCCs.


Subject(s)
Acetamides , Carcinoma, Hepatocellular , Liver Neoplasms , Metabolic Diseases , Non-alcoholic Fatty Liver Disease , Proteins , Humans , Animals , Mice , Carcinoma, Hepatocellular/etiology , Liver Neoplasms/etiology , Carcinogenesis , Liver Cirrhosis/etiology , Disease Progression
2.
Front Immunol ; 14: 1290391, 2023.
Article in English | MEDLINE | ID: mdl-38077334

ABSTRACT

Background and aims: Inducible T-cell Co-Stimulator (ICOS) present on T-lymphocytes and its ligand ICOSL expressed by myeloid cells play multiple roles in regulating T-cell functions. However, recent evidence indicates that reverse signalling involving ICOSL is also important in directing the differentiation of monocyte-derived cells. In this study, we investigated the involvement of ICOS/ICOSL dyad in modulating macrophage functions during the evolution of metabolic dysfunction-associated steatohepatitis (MASH). Results: In animal models of MASH, ICOS was selectively up-regulated on CD8+ T-cells in parallel with an expansion of ICOSL-expressing macrophages. An increase in circulating soluble ICOSL was also evident in patients with MASH as compared to healthy individuals. ICOSL knockout (ICOSL-/-) mice receiving choline/methionine deficient (MCD) diet for 6 weeks had milder steatohepatitis than wild type mice. MASH improvement was confirmed in mice fed with cholesterol-enriched Western diet for 24 weeks in which ICOSL deficiency greatly reduced liver fibrosis along with the formation of crown-like macrophage aggregates producing the pro-fibrogenic mediators osteopontin (OPN) and galectin-3 (Gal-3). These effects associated with a selective shewing of F4-80+/CD11bhigh monocyte-derived macrophages (MoMFs) expressing the Triggering Receptor Expressed on Myeloid cells 2 (TREM2) to CD11blow/F4-80+ cells positive for the Kupffer cell marker C-type lectin-like type 2 receptor (CLEC-2), thus indicating an increased MoMF maturation toward monocyte-derived Kupffer cells. Conclusions: These results suggest that CD8+ T-cells interaction with monocyte-derived macrophages through ICOS/ICOSL critically supports a specific subset of TREM2+-expressing cells contributing to the evolution of steatohepatitis. The data also point ICOS/ICOSL dyad as a possible target for therapeutic interventions in MASH.


Subject(s)
CD8-Positive T-Lymphocytes , Fatty Liver , Animals , Humans , Mice , CD8-Positive T-Lymphocytes/metabolism , Inducible T-Cell Co-Stimulator Ligand/metabolism , Inducible T-Cell Co-Stimulator Protein/genetics , Interleukin-2 , Ligands , Signal Transduction
3.
Front Immunol ; 13: 910526, 2022.
Article in English | MEDLINE | ID: mdl-35874657

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is becoming the most common chronic liver disease worldwide. In 20-30% of patients, NAFLD can progress into non-alcoholic steatohepatitis (NASH), eventually leading to fibrosis, cirrhosis and hepatocellular carcinoma development. SerpinB3 (SB3), a hypoxia-inducible factor-2α dependent cysteine protease inhibitor, is up-regulated in hepatocytes during progressive NAFLD and proposed to contribute to disease progression. In this study we investigated the pro-inflammatory role of SB3 by employing phorbol-myristate acetate-differentiated human THP-1 macrophages exposed in vitro to human recombinant SB3 (hrSB3) along with mice overexpressing SB3 in hepatocytes (TG/SB3) or knockout for SB3 (KO/SB3) in which NASH was induced by feeding methionine/choline deficient (MCD) or a choline-deficient, L-amino acid defined (CDAA) diets. In vivo experiments showed that the induction of NASH in TG/SB3 mice was characterized by an impressive increase of liver infiltrating macrophages that formed crown-like aggregates and by an up-regulation of hepatic transcript levels of pro-inflammatory cytokines. All these parameters and the extent of liver damage were significantly blunted in KO/SB3 mice. In vitro experiments confirmed that hrSB3 stimulated macrophage production of M1-cytokines such as TNFα and IL-1ß and reactive oxygen species along with that of TGFß and VEGF through the activation of the NF-kB transcription factor. The opposite changes in liver macrophage activation observed in TG/SB3 or KO/SB3 mice with NASH were associated with a parallel modulation in the expression of triggering receptor expressed on myeloid cells-2 (TREM2), CD9 and galectin-3 markers, recently detected in NASH-associated macrophages. From these results we propose that SB3, produced by activated/injured hepatocytes, may operate as a pro-inflammatory mediator in NASH contributing to the disease progression.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Antigens, Neoplasm , Choline , Cytokines , Disease Progression , Humans , Inflammation Mediators , Membrane Glycoproteins , Mice , Mice, Knockout , Non-alcoholic Fatty Liver Disease/pathology , Receptors, Immunologic , Serpins , THP-1 Cells
4.
Clin Sci (Lond) ; 136(9): 643-656, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35438166

ABSTRACT

Annexin A1 (AnxA1) is an important effector in the resolution of inflammation which is involved in modulating hepatic inflammation in nonalcoholic steatohepatitis (NASH). In the present study, we have investigated the possible effects of treatment with AnxA1 for counteracting the progression of experimental NASH. NASH was induced in C57BL/6 mice by feeding methionine-choline deficient (MCD) or Western diets (WDs) and the animals were treated for 4-6 weeks with human recombinant AnxA1 (hrAnxA1; 1 µg, daily IP) or saline once NASH was established. In both experimental models, treatment with hrAnxA1 improved parenchymal injury and lobular inflammation without interfering with the extension of steatosis. Furthermore, administration of hrAnxA1 significantly attenuated the hepatic expression of α1-procollagen and TGF-ß1 and reduced collagen deposition, as evaluated by collagen Sirius Red staining. Flow cytometry and immunohistochemistry showed that hrAnxA1 did not affect the liver recruitment of macrophages, but strongly interfered with the formation of crown-like macrophage aggregates and reduced their capacity of producing pro-fibrogenic mediators like osteopontin (OPN) and galectin-3 (Gal-3). This effect was related to an interference with the acquisition of a specific macrophage phenotype characterized by the expression of the Triggering Receptor Expressed on Myeloid cells 2 (TREM-2), CD9 and CD206, previously associated with NASH evolution to cirrhosis. Collectively, these results indicate that, beside ameliorating hepatic inflammation, AnxA1 is specifically effective in preventing NASH-associated fibrosis by interfering with macrophage pro-fibrogenic features. Such a novel function of AnxA1 gives the rationale for the development of AnxA1 analogs for the therapeutic control of NASH evolution.


Subject(s)
Annexin A1 , Non-alcoholic Fatty Liver Disease , Animals , Annexin A1/metabolism , Disease Models, Animal , Fibrosis , Inflammation/pathology , Liver/metabolism , Liver Cirrhosis/metabolism , Methionine , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism
5.
Front Immunol ; 12: 786680, 2021.
Article in English | MEDLINE | ID: mdl-34925367

ABSTRACT

The liver capacity to recover from acute liver injury is a critical factor in the development of acute liver failure (ALF) caused by viral infections, ischemia/reperfusion or drug toxicity. Liver healing requires the switching of pro-inflammatory monocyte-derived macrophages(MoMFs) to a reparative phenotype. However, the mechanisms involved are still incompletely characterized. In this study we investigated the contribution of T-lymphocyte/macrophage interaction through the co-stimulatory molecule Inducible T-cell co-stimulator (ICOS; CD278) and its ligand (ICOSL; CD275) in modulating liver repair. The role of ICOS/ICOSL dyad was investigated during the recovery from acute liver damage induced by a single dose of carbon tetrachloride (CCl4). Flow cytometry of non-parenchymal liver cells obtained from CCl4-treated wild-type mice revealed that the recovery from acute liver injury associated with a specific up-regulation of ICOS in CD8+ T-lymphocytes and with an increase in ICOSL expression involving CD11bhigh/F4-80+ hepatic MoMFs. Although ICOS deficiency did not influence the severity of liver damage and the evolution of inflammation, CCl4-treated ICOS knockout (ICOS-/- ) mice showed delayed clearance of liver necrosis and increased mortality. These animals were also characterized by a significant reduction of hepatic reparative MoMFs due to an increased rate of cell apoptosis. An impaired liver healing and loss of reparative MoMFs was similarly evident in ICOSL-deficient mice or following CD8+ T-cells ablation in wild-type mice. The loss of reparative MoMFs was prevented by supplementing CCl4-treated ICOS-/- mice with recombinant ICOS (ICOS-Fc) which also stimulated full recovery from liver injury. These data demonstrated that CD8+ T-lymphocytes play a key role in supporting the survival of reparative MoMFs during liver healing trough ICOS/ICOSL-mediated signaling. These observations open the possibility of targeting ICOS/ICOSL dyad as a novel tool for promoting efficient healing following acute liver injury.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Inducible T-Cell Co-Stimulator Protein/metabolism , Liver Failure, Acute/immunology , Liver Regeneration/immunology , Macrophages/immunology , Animals , CD8-Positive T-Lymphocytes/metabolism , Carbon Tetrachloride/administration & dosage , Carbon Tetrachloride/toxicity , Cell Communication/immunology , Disease Models, Animal , Humans , Inducible T-Cell Co-Stimulator Ligand/metabolism , Inducible T-Cell Co-Stimulator Protein/genetics , Liver/cytology , Liver/drug effects , Liver/immunology , Liver/pathology , Liver Failure, Acute/chemically induced , Liver Failure, Acute/pathology , Macrophages/metabolism , Male , Mice , Mice, Knockout , Signal Transduction/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...