Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Immunol Cell Biol ; 100(4): 250-266, 2022 04.
Article in English | MEDLINE | ID: mdl-35188985

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic perpetuated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has highlighted the continued need for broadly protective vaccines that elicit robust and durable protection. Here, the vaccinia virus-based, replication-defective Sementis Copenhagen Vector (SCV) was used to develop a first-generation COVID-19 vaccine encoding the spike glycoprotein (SCV-S). Vaccination of mice rapidly induced polyfunctional CD8 T cells with cytotoxic activity and robust type 1 T helper-biased, spike-specific antibodies, which are significantly increased following a second vaccination, and contained neutralizing activity against the alpha and beta variants of concern. Longitudinal studies indicated that neutralizing antibody activity was maintained up to 9 months after vaccination in both young and middle-aged mice, with durable immune memory evident even in the presence of pre-existing vector immunity. Therefore, SCV-S vaccination has a positive immunogenicity profile, with potential to expand protection generated by current vaccines in a heterologous boost format and presents a solid basis for second-generation SCV-based COVID-19 vaccine candidates incorporating additional SARS-CoV-2 immunogens.


Subject(s)
COVID-19 , Vaccinia , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunity, Cellular , Immunity, Humoral , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Vaccination
2.
PLoS Pathog ; 17(7): e1009788, 2021 07.
Article in English | MEDLINE | ID: mdl-34310650

ABSTRACT

Zika virus (ZIKV) strains are classified into the African and Asian genotypes. The higher virulence of the African MR766 strain, which has been used extensively in ZIKV research, in adult IFNα/ß receptor knockout (IFNAR-/-) mice is widely viewed as an artifact associated with mouse adaptation due to at least 146 passages in wild-type suckling mouse brains. To gain insights into the molecular determinants of MR766's virulence, a series of genes from MR766 were swapped with those from the Asian genotype PRVABC59 isolate, which is less virulent in IFNAR-/- mice. MR766 causes 100% lethal infection in IFNAR-/- mice, but when the prM gene of MR766 was replaced with that of PRVABC59, the chimera MR/PR(prM) showed 0% lethal infection. The reduced virulence was associated with reduced neuroinvasiveness, with MR766 brain titers ≈3 logs higher than those of MR/PR(prM) after subcutaneous infection, but was not significantly different in brain titers of MR766 and MR/PR(prM) after intracranial inoculation. MR/PR(prM) also showed reduced transcytosis when compared with MR766 in vitro. The high neuroinvasiveness of MR766 in IFNAR-/- mice could be linked to the 10 amino acids that differ between the prM proteins of MR766 and PRVABC59, with 5 of these changes affecting positive charge and hydrophobicity on the exposed surface of the prM protein. These 10 amino acids are highly conserved amongst African ZIKV isolates, irrespective of suckling mouse passage, arguing that the high virulence of MR766 in adult IFNAR-/- mice is not the result of mouse adaptation.


Subject(s)
Viral Envelope Proteins/genetics , Virulence/genetics , Zika Virus Infection/virology , Zika Virus/genetics , Zika Virus/pathogenicity , Animals , Blood-Brain Barrier , Capillary Permeability , Genotype , Mice , Mice, Inbred C57BL , Mice, Knockout , Zika Virus/metabolism
3.
Viruses ; 13(2)2021 01 20.
Article in English | MEDLINE | ID: mdl-33498300

ABSTRACT

Alfuy (ALFV) is an attenuated flavivirus related to the Murray Valley encephalitis virus (MVEV). We previously identified markers of attenuation in the envelope (E) protein of the prototype strain (ALFV3929), including the hinge region (E273-277) and lack of glycosylation at E154-156. To further determine the mechanisms of attenuation we assessed ALFV3929 binding to glycosaminoglycans (GAG), a known mechanism of flaviviruses attenuation. Indeed, ALFV3929 exhibited reduced binding to GAG-rich cells in the presence of heparin; however, low-passage ALFV isolates were relatively unaffected. Sequence comparisons between ALFV strains and structural modelling incriminated a positively-charged residue (K327) in ALFV3929 as a GAG-binding motif. Substitution of this residue to the corresponding uncharged residue in MVEV (L), using a previously described chimeric virus containing the prM & E genes of ALFV3929 in the backbone of MVEV (MVEV/ALFV-prME), confirmed a role for K327 in enhanced GAG binding. When the wild type residues at E327, E273-277 and E154-156 of ALFV3929 were replaced with the corresponding residues from virulent MVEV, it revealed each motif contributed to attenuation of ALFV3929, with the E327/E273-277 combination most dominant. These data demonstrate that attenuation of ALFV3929 is multifactorial and provide new insights for the rational design of attenuated flavivirus vaccines.


Subject(s)
Encephalitis Virus, Murray Valley/pathogenicity , Encephalitis Viruses, Japanese/pathogenicity , Encephalitis, Arbovirus/virology , Flavivirus Infections/virology , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism , Amino Acid Motifs , Animals , Brain/pathology , Brain/virology , Cell Line , Encephalitis Virus, Murray Valley/chemistry , Encephalitis Virus, Murray Valley/metabolism , Encephalitis Viruses, Japanese/chemistry , Encephalitis Viruses, Japanese/growth & development , Encephalitis Viruses, Japanese/metabolism , Encephalitis, Arbovirus/pathology , Flavivirus Infections/pathology , Glycosaminoglycans/metabolism , Glycosylation , Heparin/pharmacology , Mice , Mutation , Protein Domains , Serial Passage , Viral Envelope Proteins/genetics , Viral Plaque Assay , Virulence
4.
PLoS Pathog ; 17(1): e1009215, 2021 01.
Article in English | MEDLINE | ID: mdl-33439897

ABSTRACT

Poxvirus systems have been extensively used as vaccine vectors. Herein a RNA-Seq analysis of intramuscular injection sites provided detailed insights into host innate immune responses, as well as expression of vector and recombinant immunogen genes, after vaccination with a new multiplication defective, vaccinia-based vector, Sementis Copenhagen Vector. Chikungunya and Zika virus immunogen mRNA and protein expression was associated with necrosing skeletal muscle cells surrounded by mixed cellular infiltrates. The multiple adjuvant signatures at 12 hours post-vaccination were dominated by TLR3, 4 and 9, STING, MAVS, PKR and the inflammasome. Th1 cytokine signatures were dominated by IFNγ, TNF and IL1ß, and chemokine signatures by CCL5 and CXCL12. Multiple signatures associated with dendritic cell stimulation were evident. By day seven, vaccine transcripts were absent, and cell death, neutrophil, macrophage and inflammation annotations had abated. No compelling arthritis signatures were identified. Such injection site vaccinology approaches should inform refinements in poxvirus-based vector design.


Subject(s)
Genetic Vectors/administration & dosage , Immunity, Innate/immunology , Injection Site Reaction/immunology , Vaccination/methods , Vaccines, Synthetic/administration & dosage , Vaccinia/immunology , Zika Virus Infection/immunology , Animals , Female , Genetic Vectors/genetics , Genome, Viral , Mice , Mice, Inbred C57BL , RNA-Seq , Vaccines, Synthetic/immunology , Vaccinia/genetics , Vaccinia/metabolism , Vaccinia/virology , Vaccinia virus/isolation & purification , Vaccinology , Zika Virus/isolation & purification , Zika Virus Infection/genetics , Zika Virus Infection/metabolism , Zika Virus Infection/virology
5.
NPJ Vaccines ; 5(1): 44, 2020.
Article in English | MEDLINE | ID: mdl-32550013

ABSTRACT

The Sementis Copenhagen Vector (SCV) is a new vaccinia virus-derived, multiplication-defective, vaccine technology assessed herein in non-human primates. Indian rhesus macaques (Macaca mulatta) were vaccinated with a multi-pathogen recombinant SCV vaccine encoding the structural polyproteins of both Zika virus (ZIKV) and chikungunya virus (CHIKV). After one vaccination, neutralising antibody responses to ZIKV and four strains of CHIKV, representative of distinct viral genotypes, were generated. A second vaccination resulted in significant boosting of neutralising antibody responses to ZIKV and CHIKV. Following challenge with ZIKV, SCV-ZIKA/CHIK-vaccinated animals showed significant reductions in viremias compared with animals that had received a control SCV vaccine. Two SCV vaccinations also generated neutralising and IgG ELISA antibody responses to vaccinia virus. These results demonstrate effective induction of immunity in non-human primates by a recombinant SCV vaccine and illustrates the utility of SCV as a multi-disease vaccine platform capable of delivering multiple large immunogens.

6.
Vaccines (Basel) ; 8(2)2020 May 05.
Article in English | MEDLINE | ID: mdl-32380760

ABSTRACT

Chikungunya virus (CHIKV), Ross River virus (RRV), o'nyong nyong virus (ONNV), Mayaro virus (MAYV) and Getah virus (GETV) represent arthritogenic alphaviruses belonging to the Semliki Forest virus antigenic complex. Antibodies raised against one of these viruses can cross-react with other serogroup members, suggesting that, for instance, a CHIKV vaccine (deemed commercially viable) might provide cross-protection against antigenically related alphaviruses. Herein we use human alphavirus isolates (including a new human RRV isolate) and wild-type mice to explore whether infection with one virus leads to cross-protection against viremia after challenge with other members of the antigenic complex. Persistently infected Rag1-/- mice were also used to assess the cross-protective capacity of convalescent CHIKV serum. We also assessed the ability of a recombinant poxvirus-based CHIKV vaccine and a commercially available formalin-fixed, whole-virus GETV vaccine to induce cross-protective responses. Although cross-protection and/or cross-reactivity were clearly evident, they were not universal and were often suboptimal. Even for the more closely related viruses (e.g., CHIKV and ONNV, or RRV and GETV), vaccine-mediated neutralization and/or protection against the intended homologous target was significantly more effective than cross-neutralization and/or cross-protection against the heterologous virus. Effective vaccine-mediated cross-protection would thus likely require a higher dose and/or more vaccinations, which is likely to be unattractive to regulators and vaccine manufacturers.

7.
Front Immunol, v. 10, 3083, jan. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2931

ABSTRACT

Granzyme A (GzmA) is secreted by cytotoxic lymphocytes and has traditionally been viewed as a mediator of cell death. However, a growing body of data suggests the physiological role of GzmA is promotion of inflammation. Here, we show that GzmA is significantly elevated in the sera of chikungunya virus (CHIKV) patients and that GzmA levels correlated with viral loads and disease scores in these patients. Serum GzmA levels were also elevated in CHIKV mouse models, with NK cells the likely source. Infection of mice deficient in type I interferon responses with CHIKV, Zika virus, or dengue virus resulted in high levels of circulating GzmA. We also show that subcutaneous injection of enzymically active recombinant mouse GzmA was able to mediate inflammation, both locally at the injection site as well as at a distant site. Protease activated receptors (PARs) may represent targets for GzmA, and we show that treatment with PAR antagonist ameliorated GzmA- and CHIKV-mediated inflammation.

8.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17422

ABSTRACT

Granzyme A (GzmA) is secreted by cytotoxic lymphocytes and has traditionally been viewed as a mediator of cell death. However, a growing body of data suggests the physiological role of GzmA is promotion of inflammation. Here, we show that GzmA is significantly elevated in the sera of chikungunya virus (CHIKV) patients and that GzmA levels correlated with viral loads and disease scores in these patients. Serum GzmA levels were also elevated in CHIKV mouse models, with NK cells the likely source. Infection of mice deficient in type I interferon responses with CHIKV, Zika virus, or dengue virus resulted in high levels of circulating GzmA. We also show that subcutaneous injection of enzymically active recombinant mouse GzmA was able to mediate inflammation, both locally at the injection site as well as at a distant site. Protease activated receptors (PARs) may represent targets for GzmA, and we show that treatment with PAR antagonist ameliorated GzmA- and CHIKV-mediated inflammation.

9.
Front Immunol ; 10: 2736, 2019.
Article in English | MEDLINE | ID: mdl-31849947

ABSTRACT

Chikungunya virus (CHIKV) is a mosquito transmitted alphavirus associated with a robust systemic infection and an acute inflammatory rheumatic disease. A high fiber diet has been widely promoted for its ability to ameliorate inflammatory diseases. Fiber is fermented in the gut into short chain fatty acids such as acetate, propionate, and butyrate, which enter the circulation providing systemic anti-inflammatory activities. Herein we show that mice fed a high fiber diet show a clear exacerbation of CHIKV arthropathy, with increased edema and neutrophil infiltrates. RNA-Seq analyses illustrated that a high fiber diet, in this setting, promoted a range of pro-neutrophil responses including Th17/IL-17. Gene Set Enrichment Analyses demonstrated significant similarities with mouse models of inflammatory psoriasis and significant depression of macrophage resolution phase signatures in the CHIKV arthritic lesions from mice fed a high fiber diet. Supplementation of the drinking water with butyrate also increased edema after CHIKV infection. However, the mechanisms involved were different, with modulation of AP-1 and NF-κB responses identified, potentially implicating deoptimization of endothelial barrier repair. Thus, neither fiber nor short chain fatty acids provided benefits in this acute infectious disease setting, which is characterized by widespread viral cytopathic effects and a need for tissue repair.


Subject(s)
Butyrates/adverse effects , Chikungunya Fever/immunology , Chikungunya virus/physiology , Dietary Fiber/adverse effects , Inflammation/etiology , Neutrophils/immunology , Rheumatic Diseases/etiology , Animals , Butyrates/administration & dosage , Chikungunya Fever/complications , Diet , Dietary Fiber/administration & dosage , Disease Models, Animal , Disease Progression , Edema , Humans , Joint Diseases , Mice , Mice, Inbred C57BL , Neutrophil Infiltration
10.
Nat Microbiol ; 4(5): 876-887, 2019 05.
Article in English | MEDLINE | ID: mdl-30886357

ABSTRACT

Arboviruses cycle between, and replicate in, both invertebrate and vertebrate hosts, which for Zika virus (ZIKV) involves Aedes mosquitoes and primates1. The viral determinants required for replication in such obligate hosts are under strong purifying selection during natural virus evolution, making it challenging to resolve which determinants are optimal for viral fitness in each host. Herein we describe a deep mutational scanning (DMS) strategy2-5 whereby a viral cDNA library was constructed containing all codon substitutions in the C-terminal 204 amino acids of ZIKV envelope protein (E). The cDNA library was transfected into C6/36 (Aedes) and Vero (primate) cells, with subsequent deep sequencing and computational analyses of recovered viruses showing that substitutions K316Q and S461G, or Q350L and T397S, conferred substantial replicative advantages in mosquito and primate cells, respectively. A 316Q/461G virus was constructed and shown to be replication-defective in mammalian cells due to severely compromised virus particle formation and secretion. The 316Q/461G virus was also highly attenuated in human brain organoids, and illustrated utility as a vaccine in mice. This approach can thus imitate evolutionary selection in a matter of days and identify amino acids key to the regulation of virus replication in specific host environments.


Subject(s)
DNA Mutational Analysis/methods , Viral Tropism , Zika Virus Infection/virology , Zika Virus/physiology , Aedes/virology , Animals , Biological Evolution , Chlorocebus aethiops , Female , Host Specificity , Humans , Mice , Mice, Inbred C57BL , Models, Molecular , Mosquito Vectors/virology , Mutation , Selection, Genetic , Vero Cells , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Virus Replication , Zika Virus/chemistry , Zika Virus/genetics
11.
Front Immunol ; 10: 3083, 2019.
Article in English | MEDLINE | ID: mdl-31993061

ABSTRACT

Granzyme A (GzmA) is secreted by cytotoxic lymphocytes and has traditionally been viewed as a mediator of cell death. However, a growing body of data suggests the physiological role of GzmA is promotion of inflammation. Here, we show that GzmA is significantly elevated in the sera of chikungunya virus (CHIKV) patients and that GzmA levels correlated with viral loads and disease scores in these patients. Serum GzmA levels were also elevated in CHIKV mouse models, with NK cells the likely source. Infection of mice deficient in type I interferon responses with CHIKV, Zika virus, or dengue virus resulted in high levels of circulating GzmA. We also show that subcutaneous injection of enzymically active recombinant mouse GzmA was able to mediate inflammation, both locally at the injection site as well as at a distant site. Protease activated receptors (PARs) may represent targets for GzmA, and we show that treatment with PAR antagonist ameliorated GzmA- and CHIKV-mediated inflammation.


Subject(s)
Arbovirus Infections/immunology , Chikungunya Fever/immunology , Granzymes/immunology , Inflammation/immunology , Killer Cells, Natural/immunology , Animals , Granzymes/blood , Humans , Mice , Mice, Inbred C57BL
12.
Viruses ; 10(10)2018 10 03.
Article in English | MEDLINE | ID: mdl-30282919

ABSTRACT

The recent emergence of Zika virus (ZIKV) in Brazil was associated with an increased number of fetal brain infections that resulted in a spectrum of congenital neurological complications known as congenital Zika syndrome (CZS). Herein, we generated de novo from sequence data an early Asian lineage ZIKV isolate (ZIKV-MY; Malaysia, 1966) not associated with microcephaly and compared the in vitro replication kinetics and fetal brain infection in interferon α/ß receptor 1 knockout (IFNAR1-/-) dams of this isolate and of a Brazilian isolate (ZIKV-Natal; Natal, 2015) unequivocally associated with microcephaly. The replication efficiencies of ZIKV-MY and ZIKV-Natal in A549 and Vero cells were similar, while ZIKV-MY replicated more efficiently in wild-type (WT) and IFNAR-/- mouse embryonic fibroblasts. Viremias in IFNAR1-/- dams were similar after infection with ZIKV-MY or ZIKV-Natal, and importantly, infection of fetal brains was also not significantly different. Thus, fetal brain infection does not appear to be a unique feature of Brazilian ZIKV isolates.


Subject(s)
Brain/virology , Fetus/virology , Pregnancy Complications, Infectious/virology , Zika Virus Infection/pathology , Zika Virus Infection/virology , Animals , Chlorocebus aethiops , Disease Models, Animal , Female , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Placenta/virology , Pregnancy , Receptor, Interferon alpha-beta/deficiency , Receptor, Interferon alpha-beta/genetics , Vero Cells , Viremia , Virus Replication , Zika Virus/physiology
13.
Expert Rev Vaccines ; 17(10): 925-934, 2018 10.
Article in English | MEDLINE | ID: mdl-30300041

ABSTRACT

INTRODUCTION: With the increasing number of vaccines and vaccine-preventable diseases, the pressure to generate multi-valent and multi-pathogen vaccines grows. Combining individual established vaccines to generate single-shot formulations represents an established path, with significant ensuing public health and cost benefits. Poxvirus-based vector systems have the capacity for large recombinant payloads and have been widely used as platforms for the development of recombinant vaccines encoding multiple antigens, with considerable clinical trials activity and a number of registered and licensed products. AREAS COVERED: Herein we discuss design strategies, production processes, safety issues, regulatory hurdles and clinical trial activities, as well as pertinent new technologies such as systems vaccinology and needle-free delivery. Literature searches used PubMed, Google Scholar and clinical trials registries, with a focus on the recombinant vaccinia-based systems, Modified Vaccinia Ankara and the recently developed Sementis Copenhagen Vector. EXPERT COMMENTARY: Vaccinia-based platforms show considerable promise for the development of multi-valent and multi-pathogen vaccines, especially with recent developments in vector technologies and manufacturing processes. New methodologies for defining immune correlates and human challenge models may also facilitate bringing such vaccines to market.


Subject(s)
Genetic Vectors , Vaccinia virus/genetics , Viral Vaccines/administration & dosage , Animals , Humans , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Viral Vaccines/immunology , Virus Diseases/prevention & control
14.
Pathog Glob Health ; 112(3): 107-114, 2018 05.
Article in English | MEDLINE | ID: mdl-29737236

ABSTRACT

Arthropod-borne disease outbreaks, facilitated by the introduction of exotic mosquitoes, pose a significant public health threat. Recent chikungunya virus (CHIKV) epidemics in Europe highlight the importance of understanding the vector potential of invading mosquitoes. In this paper we explore the potential of Aedes koreicus, a mosquito new to Europe, to transmit CHIKV. Mosquitoes were challenged with CHIKV and maintained at two temperatures: 23 °C and a fluctuating temperature. Total CHIKV infection rates at 3, 10 and 14 days post-feeding were low for both temperature treatments (13.8% at 23 °C; 6.2% at fluctuating T). A low percentage (6.1%, n = 65) of mosquitoes maintained at a constant 23 °C showed dissemination of the virus to the wings and legs. Infection of mosquito saliva, with live virus, occurred in 2 mosquitoes. No dissemination was noted under the fluctuating temperature regime. Based on these results we conclude that CHIKV transmission by this species is possible.


Subject(s)
Aedes/growth & development , Aedes/virology , Chikungunya Fever/transmission , Chikungunya virus/isolation & purification , Mosquito Vectors/growth & development , Mosquito Vectors/virology , Aedes/classification , Aedes/radiation effects , Animals , Disease Transmission, Infectious , Europe , Extremities/virology , Mosquito Vectors/radiation effects , Saliva/virology , Temperature , Wings, Animal/virology
15.
J Gen Virol ; 99(4): 596-609, 2018 04.
Article in English | MEDLINE | ID: mdl-29533743

ABSTRACT

Liao ning virus (LNV) was first isolated in 1996 from mosquitoes in China, and has been shown to replicate in selected mammalian cell lines and to cause lethal haemorrhagic disease in experimentally infected mice. The first detection of LNV in Australia was by deep sequencing of mosquito homogenates. We subsequently isolated LNV from mosquitoes of four genera (Culex, Anopheles, Mansonia and Aedes) in New South Wales, Northern Territory, Queensland and Western Australia; the earliest of these Australian isolates were obtained from mosquitoes collected in 1988, predating the first Chinese isolates. Genetic analysis revealed that the Australian LNV isolates formed two new genotypes: one including isolates from eastern and northern Australia, and the second comprising isolates from the south-western corner of the continent. In contrast to findings reported for the Chinese LNV isolates, the Australian LNV isolates did not replicate in vertebrate cells in vitro or in vivo, or produce signs of disease in wild-type or immunodeficient mice. A panel of human and animal sera collected from regions where the virus was found in high prevalence also showed no evidence of LNV-specific antibodies. Furthermore, high rates of virus detection in progeny reared from infected adult female mosquitoes, coupled with visualization of the virus within the ovarian follicles by immunohistochemistry, suggest that LNV is transmitted transovarially. Thus, despite relatively minor genomic differences between Chinese and Australian LNV strains, the latter display a characteristic insect-specific phenotype.


Subject(s)
Aedes/virology , Anopheles/virology , Culex/virology , Mosquito Vectors/virology , Reoviridae Infections/virology , Reoviridae/isolation & purification , Aedes/physiology , Animals , Anopheles/physiology , Australia , China , Culex/physiology , Female , Genome, Viral , Genotype , Host Specificity , Humans , Male , Mice , Mice, Inbred C57BL , Mosquito Vectors/physiology , Phenotype , Phylogeny , Reoviridae/classification , Reoviridae/genetics , Reoviridae/physiology , Reoviridae Infections/transmission , Virus Replication
16.
Nat Commun ; 9(1): 1230, 2018 03 26.
Article in English | MEDLINE | ID: mdl-29581442

ABSTRACT

Zika and chikungunya viruses have caused major epidemics and are transmitted by Aedes aegypti and/or Aedes albopictus mosquitoes. The "Sementis Copenhagen Vector" (SCV) system is a recently developed vaccinia-based, multiplication-defective, vaccine vector technology that allows manufacture in modified CHO cells. Herein we describe a single-vector construct SCV vaccine that encodes the structural polyprotein cassettes of both Zika and chikungunya viruses from different loci. A single vaccination of mice induces neutralizing antibodies to both viruses in wild-type and IFNAR-/- mice and protects against (i) chikungunya virus viremia and arthritis in wild-type mice, (ii) Zika virus viremia and fetal/placental infection in female IFNAR-/- mice, and (iii) Zika virus viremia and testes infection and pathology in male IFNAR-/- mice. To our knowledge this represents the first single-vector construct, multi-pathogen vaccine encoding large polyproteins, and offers both simplified manufacturing and formulation, and reduced "shot burden" for these often co-circulating arboviruses.


Subject(s)
Chikungunya Fever/prevention & control , Chikungunya virus/immunology , Genetic Vectors , Vaccinia virus/genetics , Viral Vaccines/genetics , Viral Vaccines/immunology , Zika Virus Infection/prevention & control , Zika Virus/immunology , Animals , Antibodies, Neutralizing/biosynthesis , CHO Cells , Chikungunya Fever/immunology , Chlorocebus aethiops , Cricetulus , Enzyme-Linked Immunosorbent Assay , Female , HeLa Cells , Humans , Male , Maternal-Fetal Exchange , Mice, Inbred C57BL , Pregnancy , Receptor, Interferon alpha-beta/genetics , Vero Cells , Viral Vaccines/administration & dosage , Zika Virus Infection/immunology
17.
Transfusion ; 58(2): 485-492, 2018 02.
Article in English | MEDLINE | ID: mdl-29350414

ABSTRACT

BACKGROUND: Emerging transfusion-transmissible pathogens, including arboviruses such as West Nile, Zika, dengue, and Ross River viruses, are potential threats to transfusion safety. The most prevalent arbovirus in humans in Australia is Ross River virus (RRV); however, prevalence varies substantially around the country. Modeling estimated a yearly risk of 8 to 11 potentially RRV-viremic fresh blood components nationwide. This study aimed to measure the occurrence of RRV viremia among donors who donated at Australian collection centers located in areas with significant RRV transmission during one peak season. STUDY DESIGN AND METHODS: Plasma samples were collected from donors (n = 7500) who donated at the selected collection centers during one peak season. Viral RNA was extracted from individual samples, and quantitative reverse transcription-polymerase chain reaction was performed. RESULTS: Regions with the highest rates of RRV transmission were not areas where donor centers were located. We did not detect RRV RNA among 7500 donations collected at the selected centers, resulting in a zero risk estimate with a one-sided 95% confidence interval of 0 to 1 in 2019 donations. CONCLUSION: Our results suggest that the yearly risk of collecting a RRV-infected blood donation in Australia is low and is at the lower range of previous risk modeling. The majority of Australian donor centers were not in areas known to be at the highest risk for RRV transmission, which was not taken into account in previous models based on notification data. Therefore, we believe that the risk of RRV transfusion transmission in Australia is acceptably low and appropriately managed through existing risk management, including donation restrictions and recall policies.


Subject(s)
Alphavirus Infections/blood , Blood Donors , Blood Safety , RNA, Viral/blood , Ross River virus , Alphavirus Infections/epidemiology , Australia/epidemiology , Female , Humans , Male
18.
PLoS Pathog ; 13(12): e1006788, 2017 12.
Article in English | MEDLINE | ID: mdl-29281739

ABSTRACT

Chikungunya virus (CHIKV) belongs to a group of mosquito-borne alphaviruses associated with acute and chronic arthropathy, with peripheral and limb joints most commonly affected. Using a mouse model of CHIKV infection and arthritic disease, we show that CHIKV replication and the ensuing foot arthropathy were dramatically reduced when mice were housed at 30°C, rather than the conventional 22°C. The effect was not associated with a detectable fever, but was dependent on type I interferon responses. Bioinformatics analyses of RNA-Seq data after injection of poly(I:C)/jetPEI suggested the unfolded protein response and certain type I interferon responses are promoted when feet are slightly warmer. The ambient temperature thus appears able profoundly to effect anti-viral activity in the periphery, with clear consequences for alphaviral replication and the ensuing arthropathy. These observations may provide an explanation for why alphaviral arthropathies are largely restricted to joints of the limbs and the extremities.


Subject(s)
Alphavirus Infections/immunology , Alphavirus Infections/virology , Arthritis, Experimental/immunology , Arthritis, Experimental/virology , Arthritis, Infectious/immunology , Arthritis, Infectious/virology , Interferon Type I/metabolism , Alphavirus Infections/pathology , Animals , Arthritis, Experimental/pathology , Arthritis, Infectious/pathology , Chikungunya Fever/immunology , Chikungunya Fever/pathology , Chikungunya Fever/virology , Chikungunya virus/immunology , Chikungunya virus/pathogenicity , Chikungunya virus/physiology , Female , Foot , Host-Pathogen Interactions/immunology , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Ross River virus/immunology , Ross River virus/pathogenicity , Ross River virus/physiology , Temperature , Viral Load , Virus Replication/immunology , Virus Replication/physiology
19.
Vector Borne Zoonotic Dis ; 17(12): 825-835, 2017 12.
Article in English | MEDLINE | ID: mdl-29083957

ABSTRACT

In Australia, infection of horses with the West Nile virus (WNV) or Murray Valley encephalitis virus (MVEV) occasionally results in severe neurological disease that cannot be clinically differentiated. Confirmatory serological tests to detect antibody specific for MVEV or WNV in horses are often hampered by cross-reactive antibodies induced to conserved epitopes on the envelope (E) protein. This study utilized bacterially expressed recombinant antigens derived from domain III of the E protein (rE-DIII) of MVEV and WNV, respectively, to determine whether these subunit antigens provided specific diagnostic markers of infection with these two viruses. When a panel of 130 serum samples, from horses with known flavivirus infection status, was tested in enzyme-linked immunosorbent assay (ELISA) using rE-DIII antigens, a differential diagnosis of MVEV or WNV was achieved for most samples. Time-point samples from horses exposed to flavivirus infection during the 2011 outbreak of equine encephalitis in south-eastern Australia also indicated that the rE-DIII antigens were capable of detecting and differentiating MVEV and WNV infection in convalescent sera with similar sensitivity and specificity to virus neutralization tests and blocking ELISAs. Overall, these results indicate that the rE-DIII is a suitable antigen for use in rapid immunoassays for confirming MVEV and WNV infections in horses in the Australian context and warrant further assessment on sensitive, high-throughput serological platforms such as multiplex immune assays.


Subject(s)
Encephalitis Virus, Murray Valley/isolation & purification , Encephalitis, Arbovirus/veterinary , Enzyme-Linked Immunosorbent Assay/veterinary , Horse Diseases/virology , West Nile Fever/veterinary , West Nile virus/isolation & purification , Animals , Antibodies, Viral , Disease Outbreaks , Encephalitis, Arbovirus/diagnosis , Encephalitis, Arbovirus/virology , Horse Diseases/diagnosis , Horses , Neutralization Tests/veterinary , New South Wales/epidemiology , Viral Proteins , West Nile Fever/diagnosis , West Nile Fever/virology
20.
Emerg Infect Dis ; 23(8): 1289-1299, 2017 08.
Article in English | MEDLINE | ID: mdl-28726621

ABSTRACT

In northern Western Australia in 2011 and 2012, surveillance detected a novel arbovirus in mosquitoes. Genetic and phenotypic analyses confirmed that the new flavivirus, named Fitzroy River virus, is related to Sepik virus and Wesselsbron virus, in the yellow fever virus group. Most (81%) isolates came from Aedes normanensis mosquitoes, providing circumstantial evidence of the probable vector. In cell culture, Fitzroy River virus replicated in mosquito (C6/36), mammalian (Vero, PSEK, and BSR), and avian (DF-1) cells. It also infected intraperitoneally inoculated weanling mice and caused mild clinical disease in 3 intracranially inoculated mice. Specific neutralizing antibodies were detected in sentinel horses (12.6%), cattle (6.6%), and chickens (0.5%) in the Northern Territory of Australia and in a subset of humans (0.8%) from northern Western Australia.


Subject(s)
Flavivirus Infections/immunology , Flavivirus Infections/virology , Flavivirus/physiology , Aedes/virology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Australia/epidemiology , Flavivirus/classification , Flavivirus/isolation & purification , Flavivirus Infections/epidemiology , Flavivirus Infections/transmission , Genome, Viral , Humans , Mice , Phylogeny , Recombination, Genetic , United States/epidemiology , Virulence , Virus Replication , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...