Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Psychiatry ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945387

ABSTRACT

BACKGROUND: Diverse antidepressants were recently described to bind to TrkB and drive a positive allosteric modulation of endogenous BDNF. Although neurotrophins such as BDNF can bind to the p75 neurotrophin receptor (p75NTR), their precursors are the high affinity p75NTR ligands. While part of an unrelated receptor family capable of inducing completely opposite physiological changes, TrkB and p75NTR feature a cross-like conformation dimer and carry a cholesterol-recognition and alignment consensus in the transmembrane domain. Since such qualities were found crucial for antidepressants to bind to TrkB and drive behavioral and neuroplasticity effects, we hypothesized that their effects might also depend on p75NTR. METHODS: ELISA-based binding assay and NMR spectroscopy were accomplished to assess whether antidepressants would bind to p75NTR. HEK293T cells and a variety of in vitro assays were used to address whether fluoxetine (FLX) or ketamine (KET) would trigger any α- and γ-secretase-dependent p75NTR proteolysis, and lead to p75NTR nuclear localization. Ocular dominance shift was performed with male and female p75KO mice to study the effects of KET and FLX on brain plasticity, in addition to pharmacological interventions to verifying how p75NTR signaling is important for the effects of KET and FLX in enhancing extinction memory in male WT mice and rats. RESULTS: Antidepressants were found binding to p75NTR, FLX and KET triggered the p75NTR proteolytic pathway and induced p75NTR-dependent behavioral/neuroplasticity changes. CONCLUSION: We thus hypothesize that antidepressants co-opt both BDNF/TrkB and proBDNF/p75NTR systems to induce a more efficient activity-dependent synaptic competition, thereby boosting the brain ability for remodeling.

SELECTION OF CITATIONS
SEARCH DETAIL
...