Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Phys Lipids ; 163(4-5): 347-55, 2010 May.
Article in English | MEDLINE | ID: mdl-20167214

ABSTRACT

The first evidence of multi-component complexes formed by myeloperoxidase (MPO), ceruloplasmin (CP), and very low/low density lipoproteins (VLDL/LDL) obtained by electrophoresis, gel filtration, and photon-correlation spectroscopy (PCS) is presented in this paper. Complexes were observed when isolated MPO, CP, and VLDL/LDL were mixed and/or when MPO was added to the blood plasma. Complex LDL-MPO-CP was detected in 44 of 100 plasma samples taken from patients with atherosclerosis, and 33 of 44 samples also contained the VLDL-MPO-CP complex. MPO concentration in these patients' plasma exceeded 800 ng/ml. Interaction of MPO with high density lipoproteins (HDL) was not revealed, as well as binding of CP to lipoproteins in the absence of MPO. Adding antibodies against apoB-100 to VLDL-MPO-CP and LDL-MPO-CP complexes results in release of lipoproteins. Using PCS the diameters of complexes under study were evaluated. By comparing concentrations of the components in complexes formed by MPO, CP, and lipoproteins their stoichiometry was assessed as 2VLDL:1MPO:2CP and 1LDL:1MPO:2CP. Lipoproteins affected the inhibition of MPO peroxidase activity by CP. The affinity of lipoproteins to MPO-CP complex was assessed using apparent dissociation constants determined as approximately 0.3 nM for VLDL and approximately 0.14 nM for LDL.


Subject(s)
Ceruloplasmin/chemistry , Lipoproteins/chemistry , Peroxidase/chemistry , Enzyme Activation , Enzyme Stability , Multiprotein Complexes/chemistry , Protein Binding
2.
Protein Pept Lett ; 11(1): 29-33, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14965276

ABSTRACT

It has been recently shown that insulin retains its biological activity after receptor-directed internalization and it may affect the cell metabolism by interaction with cytosolic insulin-binding proteins (CIBPs). Using affinity chromatography combined with SDS-PAGE and MALDI-TOF mass-spectrometry we have identified 7 proteins from mouse liver cells that specifically bind to the insulin, including adenylate kinase 2 (25.6 kD), kinesin superfamily protein 20B (26.0 kD), hepatic arginase 1 (34.8 kD), fructose-bisphosphate aldolase B (39.5 kD), 4-hydroxyphenylpyruvate dioxygenase (45.1 kD), betaine-homocysteine methyl-transferase (45.0 kD) and KRIT1 (83.4 kD).


Subject(s)
Cytosol/metabolism , Hepatocytes/cytology , Hepatocytes/metabolism , Insulin/metabolism , Proteins/metabolism , Animals , Chromatography, Affinity , Electrophoresis, Polyacrylamide Gel , Mice , Mice, Inbred BALB C , Protein Binding , Proteins/analysis , Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...