Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Ethnopharmacol ; 324: 117707, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38232858

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The plants of the genus Casimirella ampla (Miers) (C. ampla) are extensively used in folk medicine. For a long time, rural communities have been using extracts from its roots for food and therapeutic purposes. The extract is rich in diterpenoid annonalide (Annona), which has antiophidic, anti-inflammatory and antinociceptive properties. Inflammation is the body's primary defense mechanism against cell damage and invasion by pathogens, which can trigger acute and chronic inflammatory processes. The first line of treatment for this condition consists of the use of non-steroidal anti-inflammatory drugs, but these have numerous associated collateral damages, based on scientific knowledge about diterpenoids from C. ampla, as well as their already reported antinociceptive and anti-inflammatory properties. AIMS OF THE STUDY: Evaluate the effect of Annona in classic models of inflammation and pain. MATERIALS AND METHODS: Animals were pretreated with Annona (0.1, 1.0 and 10 mg/kg), or Tween 80 (2%), or indomethacin (Indo) (10 mg/kg) orally in the paw edema tests induced by carrageenan (Cg), serotonin (5-HT), histamine, bradykinin, 48/80 and, prostaglandin E2 (PGE2), evaluating microscopic lesion scores, migration of leukocytes to the peritoneal cavity, concentration of myeloperoxide (MPO), malonyldialdehyde (MDA) and glutathione (GSH), abdominal contortion test by acetic acid and formalin test. RESULTS: Treatment with Annona compound at a dose of 0.1 mg/kg was more effective in reducing inflammatory, oxidant and nociceptive parameters, as it reduced paw edema induced by carrageenan, through different mediators and migration of inflammatory cells. Furthermore, it worked by reducing the concentration of MPO, MDA, preserving GSH levels and reducing nociception caused by formalin and acetic acid.


Subject(s)
Analgesics , Magnoliopsida , Animals , Carrageenan , Analgesics/adverse effects , Plant Extracts/adverse effects , Anti-Inflammatory Agents/adverse effects , Inflammation/drug therapy , Glutathione/metabolism , Magnoliopsida/metabolism , Acetates , Edema/chemically induced , Edema/drug therapy , Edema/metabolism
2.
J Pharm Pharmacol ; 65(5): 724-33, 2013 May.
Article in English | MEDLINE | ID: mdl-23600390

ABSTRACT

OBJECTIVES: The aim of this study was to evaluate the anti-inflammatory effect of a sulphated polysaccharide fraction (PLS) extracted from the alga Hypnea musciformis and investigate the possible involvement of the nitric oxide (NO) pathway in this effect. METHODS: The anti-inflammatory activity of PLS was evaluated using inflammatory agents (carrageenan and dextran) to induce paw oedema and peritonitis in Swiss mice. Samples of paw tissue and peritoneal fluid were removed to determine myeloperoxidase (MPO) activity, NO3 /NO2 levels, and interleukin-1ß (IL-1ß) level. The involvement of NO in the modulation of neutrophil migration in carrageenan-induced paw oedema or peritonitis was also investigated. KEY FINDINGS: Compared with vehicle-treated mice, mice pretreated with PLS (10 mg/kg) inhibited carrageenan-induced and dextran-induced oedema; it also inhibited total and differential peritoneal leucocyte counts in a model of peritonitis. These PLS effects were reversed by l-arginine treatment and recovered with the administration of a NO synthase blocker (aminoguanidine). Furthermore, PLS reduced the MPO activity, decreased IL-1ß levels, and increased NO3 /NO2 levels in the peritoneal cavity. CONCLUSIONS: PLS reduced the inflammatory response by modulating neutrophil migration, which appeared to be dependent on the NO pathway.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Immune System Diseases/prevention & control , Inflammation/drug therapy , Leukocyte Disorders/prevention & control , Nitric Oxide/metabolism , Plant Extracts/therapeutic use , Polysaccharides/therapeutic use , Rhodophyta/chemistry , Animals , Anti-Inflammatory Agents/pharmacology , Arginine/pharmacology , Carrageenan , Dextrans , Edema/chemically induced , Edema/drug therapy , Enzyme Inhibitors/pharmacology , Guanidines/pharmacology , Immune System Diseases/metabolism , Inflammation/chemically induced , Inflammation/immunology , Inflammation/metabolism , Interleukin-1beta/metabolism , Leukocyte Count , Leukocyte Disorders/metabolism , Male , Mice , Neutrophils/drug effects , Nitric Oxide Synthase/antagonists & inhibitors , Nitrogen Oxides/metabolism , Peritoneum/drug effects , Peritoneum/immunology , Peritoneum/metabolism , Peritonitis/chemically induced , Peritonitis/drug therapy , Peritonitis/immunology , Peritonitis/metabolism , Peroxidase/metabolism , Phytotherapy , Plant Extracts/pharmacology , Polysaccharides/pharmacology , Signal Transduction , Sulfur Compounds/pharmacology , Sulfur Compounds/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...