Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 26(17)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34500605

ABSTRACT

Background and Objectives: Mutual effect of the preliminary and therapeutic intranasal treatment of SD rats with DSIP (8 days) on the outcome of focal stroke, induced with intraluminal middle cerebral occlusion (MCAO), was investigated. Materials and Methods: The groups were the following: MCAO + vehicle, MCAO + DSIP, and SHAM-operated. DSIP or vehicle was applied nasally 60 (±15) minutes prior to the occlusion and for 7 days after reperfusion at dose 120 µg/kg. The battery of behavioral tests was performed on 1, 3, 7, 14, and 21 days after MCAO. Motor coordination and balance and bilateral asymmetry were tested. At the end of the study, animals were euthanized, and their brains were perfused, serial cryoslices were made, and infarction volume in them was calculated. Results: Although brain infarction in DSIP-treated animals was smaller than in vehicle-treated animals, the difference was not significant. However, motor performance in the rotarod test significantly recovered in DSIP-treated animals. Conclusions: Intranasal administration of DSIP in the course of 8 days leads to accelerated recovery of motor functions.


Subject(s)
Delta Sleep-Inducing Peptide/pharmacology , Motor Activity/drug effects , Stroke/drug therapy , Animals , Brain/drug effects , Disease Models, Animal , Electroencephalography/methods , Infarction, Middle Cerebral Artery/drug therapy , Male , Rats , Rats, Sprague-Dawley , Rotarod Performance Test/methods
2.
Biomedicines ; 9(4)2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33918965

ABSTRACT

A structural analogue of the DSIP, peptide KND, previously showed higher detoxification efficacy upon administration of the cytotoxic drug cisplatin, compared to DSIP. DSIP and KND were investigated using the model of acute myocardial infarction in male SD rats and the model of acute focal stroke in C57Bl/6 mice. A significant decrease in the myocardial infarction area was registered in KND-treated animals relative to saline-treated control animals (19.1 ± 7.3% versus 42.1 ± 9.2%). The brain infarction volume was significantly lower in animals intranasally treated with KND compared to the control saline-treated animals (7.4 ± 3.5% versus 12.2 ± 5.6%). Injection of KND in the first minute of reperfusion in the models of myocardial infarction and cerebral stroke reduced infarction of these organs, indicating a pronounced cardioprotective and neuroprotective effect of KND and potentiality for the treatment of ischemia-reperfusion injuries after transient ischemic attacks on the heart and brain, when administered during the reperfusion period. A preliminary pilot study using the model of myocardial infarction with the administration of DSIP during occlusion, and the model of cerebral stroke with the administration of KND during occlusion, resulted in 100% mortality in animals. Thus, in the case of ischemia-reperfusion injuries of the myocardium and the brain, use of these peptides is only possible during reperfusion.

3.
Mater Sci Eng C Mater Biol Appl ; 42: 461-5, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25063142

ABSTRACT

Various biomolecules, for example proteins, peptides etc., entrapped in polymer matrices, impact interactions between matrix and cells, including stimulation of cell adhesion and proliferation. Delta-sleep inducing peptide (DSIP) possesses numerous beneficial properties, including its abilities in burn treatment and neuronal protection. DSIP entrapment in two macroporous polymer matrices based on copolymer of dimethylaminoethyl methacrylate and methylen-bis-acrylamide (Co-DMAEMA-MBAA) and copolymer of acrylic acid and methylen-bis-acrylamide (Co-AA-MBAA) has been studied. Quite 100% of DSIP has been entrapped into positively charged Co-DMAEMA-MBAA matrix, while the quantity of DSIP adsorbed on negatively charged Co-AA-MBAA was only 2-6%. DSIP release from Co-DMAEMA-MBAA was observed in saline solutions (0.9% NaCl and PBS) while there was no DSIP release in water or 25% ethanol, thus ionic strength was a reason of this process.


Subject(s)
Acrylamides/chemistry , Delta Sleep-Inducing Peptide/isolation & purification , Delta Sleep-Inducing Peptide/pharmacokinetics , Methacrylates/chemistry , Polymers/chemistry , Adsorption , Delta Sleep-Inducing Peptide/chemistry , Hydrogel, Polyethylene Glycol Dimethacrylate , Hydrogen-Ion Concentration , Materials Testing , Porosity , Sodium Chloride
4.
Peptides ; 32(4): 826-31, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21262293

ABSTRACT

Delta sleep inducing peptide (WAGGDASGE, DSIP) is a well known multifunctional regulatory peptide. Numerous studies have confirmed its stress-protective and adaptive activity which is independent of the origin or nature of the stress or other harmful factors. However, the biosynthetic origin of DSIP remains obscure, since nothing is known of its protein precursor(s) and their encoding gene(s). We have performed a comprehensive analysis of available gene and protein databases for homologous peptide sites within mammalian resources including man. A family of Jumonji C (JmjC)-domain-containing histone demethylases was shown to contain a sequence fragment closely homologous to DSIP. One type of these ubiquitous and phylogenetically ancient proteins encoded by JMJD1B gene includes the WKGGNASGE sequence that differs from DSIP by only 2 amino acid residues in positions 2 and 5. The respective peptide was synthesized and its biological effects were evaluated in a preliminary way in the forced swimming and antitoxic tests. We suggest that the histone demethylases of the JmjC-group containing DSIP-related region can be considered as possible protein precursors of endogenous peptides with DSIP-like activity.


Subject(s)
Delta Sleep-Inducing Peptide/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , Amino Acid Sequence , Animals , Delta Sleep-Inducing Peptide/chemistry , Humans , Jumonji Domain-Containing Histone Demethylases/chemistry , Male , Molecular Sequence Data , Rats
5.
Peptides ; 24(2): 307-11, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12668217

ABSTRACT

Neuromodulatory delta sleep inducing peptide (DSIP) seems to be implicated in the attenuation of stress-induced pathological metabolic disturbances in various animal species and human beings. Mitochondria, as cell organelles, are considered especially sensitive to stress conditions. In this work, the influence of DSIP and Deltaran((R))-a recently developed product based upon DSIP-on processes of oxidative phosphorylation and ATP production in rat brain mitochondria and rat brain homogenates was studied. A polarographic measurement of oxygen consumption was applied to evaluate the impact of DSIP on maximal rates of mitochondrial respiration and coupling of respiration to ATP production. We provide evidence that DSIP affected the efficiency of oxidative phosphorylation on isolated rat brain mitochondria. This peptide significantly increased the rate of phosphorylated respiration V3, while the rate of uncoupled respiration V(DNP) remaining unchanged. It enhanced the respiratory control ratio RCR and the rate of ADP phosphorylation. DSIP and Deltaran exhibited the same action in rat brain homogenates. We also examined the influence of DSIP under hypoxia when mitochondrial respiratory activity is altered. In rats subjected to hypoxia, we detected a significant stress-mediated reduction of V3 and ADP/t values. Pretreatment of rats with DSIP at the dose of 120 microgram/kg (i.p.) prior to their subjection to hypoxia completely inhibited hypoxia-induced reduction of mitochondrial respiratory activity. The revealed capacity of DSIP to enhance the efficiency of oxidative phosphorylation found in vitro experiments could contribute to understanding pronounced stress protective and antioxidant action of this peptide in vivo.


Subject(s)
Brain/drug effects , Delta Sleep-Inducing Peptide/pharmacology , Glycine/pharmacology , Mitochondria/drug effects , Animals , Brain/physiology , Electron Transport/drug effects , Hypoxia/physiopathology , Male , Mitochondria/physiology , Oxidative Phosphorylation/drug effects , Rats , Stress, Physiological/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...