Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (124)2017 06 30.
Article in English | MEDLINE | ID: mdl-28715366

ABSTRACT

An original method to heat cultured cells using a 1.94 µm continuous-wave thulium laser for biological assessment is introduced here. Thulium laser radiation is strongly absorbed by water, and the cells at the bottom of the culture dish are heated through thermal diffusion. A laser fiber with a diameter of 365 µm is set about 12 cm above the culture dish, without any optics, such that the laser beam diameter is almost equivalent to the inner diameter of the culture dish (30 mm). By keeping a consistent amount of culture medium in each experiment, it is possible to irradiate the cells with a highly reproducible temperature increase. To calibrate the temperature increase and its distribution in one cell culture dish for each power setting, the temperature was measured during 10 s of irradiation at different positions and at the cellular level. The temperature distribution was represented using a mathematical graphics software program, and its pattern across the culture dish was in Gaussian form. After laser irradiation, different biological experiments could be performed to assess temperature-dependent cell responses. In this manuscript, viability staining (i.e., distinguishing live, apoptotic, and dead cells) is introduced to help determine the threshold temperatures for cell apoptosis and death after different points in time. The advantages of this method are the preciseness of the temperature and the time of heating, as well as its high efficiency in heating cells in a whole cell culture dish. Furthermore, it allows for study with a wide variety of temperatures and time durations, which can be well-controlled by a computerized operating system.


Subject(s)
Cells, Cultured/metabolism , Laser Therapy/methods , Lasers/statistics & numerical data , Thulium/chemistry , Cells, Cultured/cytology , Heating
2.
Sci Rep ; 6: 37986, 2016 11 28.
Article in English | MEDLINE | ID: mdl-27892516

ABSTRACT

Melanoma is the most deadly form of skin cancer with a yearly global incidence over 232,000 patients. Individuals with fair skin and red hair exhibit the highest risk for developing melanoma, with evidence suggesting the red/blond pigment known as pheomelanin may elevate melanoma risk through both UV radiation-dependent and -independent mechanisms. Although the ability to identify, characterize, and monitor pheomelanin within skin is vital for improving our understanding of the underlying biology of these lesions, no tools exist for real-time, in vivo detection of the pigment. Here we show that the distribution of pheomelanin in cells and tissues can be visually characterized non-destructively and noninvasively in vivo with coherent anti-Stokes Raman scattering (CARS) microscopy, a label-free vibrational imaging technique. We validated our CARS imaging strategy in vitro to in vivo with synthetic pheomelanin, isolated melanocytes, and the Mc1re/e, red-haired mouse model. Nests of pheomelanotic melanocytes were observed in the red-haired animals, but not in the genetically matched Mc1re/e; Tyrc/c ("albino-red-haired") mice. Importantly, samples from human amelanotic melanomas subjected to CARS imaging exhibited strong pheomelanotic signals. This is the first time, to our knowledge, that pheomelanin has been visualized and spatially localized in melanocytes, skin, and human amelanotic melanomas.


Subject(s)
Melanins/analysis , Melanocytes/metabolism , Melanoma, Amelanotic/metabolism , Molecular Imaging/methods , Spectrum Analysis, Raman/methods , Animals , Ear/diagnostic imaging , Flow Cytometry/methods , Humans , Melanins/metabolism , Mice, Mutant Strains , Mice, Transgenic , Microscopy, Confocal/instrumentation , Microscopy, Confocal/methods , Receptor, Melanocortin, Type 1/genetics , Skin/diagnostic imaging , Skin/metabolism , Skin Neoplasms/metabolism
3.
J Invest Dermatol ; 135(11): 2623-2631, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26099028

ABSTRACT

Cryolipolysis is a noninvasive, skin cooling treatment for local fat reduction that causes prolonged hypoesthesia over the treated area. We tested the hypothesis that cryolipolysis can attenuate nociception of a range of sensory stimuli, including stimuli that evoke itch. The effects of cryolipolysis on sensory phenomena were evaluated by quantitative sensory testing (QST) in 11 healthy subjects over a period of 56 days. Mechanical and thermal pain thresholds were measured on treated and contralateral untreated (control) flanks. Itch duration was evaluated following histamine iontophoresis. Unmyelinated epidermal nerve fiber and myelinated dermal nerve fiber densities were quantified in skin biopsies from six subjects. Cryolipolysis produced a marked decrease in mechanical and thermal pain sensitivity. Hyposensitivity started between two to seven days after cryolipolysis and persisted for at least thirty-five days post treatment. Skin biopsies revealed that cryolipolysis decreased epidermal nerve fiber density, as well as dermal myelinated nerve fiber density, which persisted throughout the study. In conclusion, cryolipolysis causes significant and prolonged decreases in cutaneous sensitivity. Our data suggest that controlled skin cooling to specifically target cutaneous nerve fibers has the potential to be useful for prolonged relief of cutaneous pain and might have a use as a research tool to isolate and study cutaneous itch-sensing nerves in human skin.


Subject(s)
Cryotherapy/methods , Sensory Receptor Cells/physiology , Sensory Thresholds/physiology , Skin/innervation , Adipose Tissue/metabolism , Adult , Analysis of Variance , Body Mass Index , Female , Healthy Volunteers , Humans , Immunohistochemistry , Lipolysis , Male , Microscopy, Confocal , Middle Aged , Nerve Fibers, Myelinated/physiology , Pain Measurement
4.
Exp Eye Res ; 124: 37-47, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24800654

ABSTRACT

Recently introduced new technologies that enable temperature-controlled laser irradiation on the RPE allowed us to investigate temperature-resolved RPE cell responses. In this study we aimed primarily to establish an experimental setup that can realize laser irradiation on RPE cell culture with the similar temperature distribution as in the clinical application, with a precise time/temperature history. With this setup, we conducted investigations to elucidate the temperature-dependent RPE cell biochemical responses and the effect of transient hyperthermia on the responses of RPE cells to the secondary-exposed oxidative stress. Porcine RPE cells cultivated in a culture dish (inner diameter = 30 mm) with culture medium were used, on which laser radiation (λ = 1940 nm, spot diameter = 30 mm) over 10 s was applied as a heat source. The irradiation provides a radially decreasing temperature profile which is close to a Gaussian shape with the highest temperature in the center. Power setting for irradiation was determined such that the peak temperature (Tmax) in the center of the laser spot at the cells reaches from 40 °C to 58 °C (40, 43, 46, 50, 58 °C). Cell viability was investigated with ethidium homodimer III staining at the time points of 3 and 24 h following laser irradiation. Twenty four hours after laser irradiation the cells were exposed to hydrogen peroxide (H2O2) for 5 h, followed by the measurement of intracellular glutathione, intracellular 4-hydroxynonenal (HNE) protein adducts, and secreted vascular endothelial growth factor (VEGF). The mean temperature threshold for RPE cell death after 3 h was found to be around 52 °C, and for 24 h around 50 °C with the current irradiation setting. A sub-lethal preconditioning on Tmax = 43 °C significantly induced the reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio, and decreased H2O2-induced increase of intracellular 4-HNE protein adducts. Although sub-lethal hyperthermia (Tmax = 40 °C, 43 °C, and 46 °C) caused a slight increase of VEGF secretion in 6 h directly following irradiation, secondary exposed H2O2-induced VEGF secretion was significantly reduced in the sub-lethally preheated groups, where the largest effect was seen following the irradiation with Tmax = 43 °C. In summary, the current results suggest that sub-lethal thermal laser irradiation on the RPE at Tmax = 43 °C for 10 s enhances cell defense system against oxidative stress, with increasing the GSH/GSSG ratio. Together with the results that the decreased amount of H2O2-induced 4-HNE in sub-lethally preheated RPE cells was accompanied by the lower secretion of VEGF, it is also strongly suggested that the sub-lethal hyperthermia may modify RPE cell functionality to protect RPE cells from oxidative stress and associated functional decrease, which are considered to play a significant role in the pathogenesis of age-related macular degeneration and other chorioretinal degenerative diseases.


Subject(s)
Hyperthermia, Induced/methods , Laser Coagulation , Oxidative Stress/physiology , Retinal Degeneration/surgery , Retinal Pigment Epithelium/surgery , Animals , Apoptosis , Cell Survival , Cells, Cultured , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Glutathione/metabolism , Immunoassay , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Swine , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...