Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Arch Toxicol ; 77(10): 576-83, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14574445

ABSTRACT

Pyridostigmine (PYR) is a carbamate cholinesterase (ChE) inhibitor used during the Persian Gulf War as a pretreatment against possible chemical nerve agent attack. Because of its quaternary structure, PYR entry into the central nervous system is limited by the blood-brain barrier (BBB). Following reports of unexplained illnesses among Gulf War veterans, however, central nervous system effects of PYR have been postulated through either stress-induced alteration of BBB permeability or via interactions with other neurotoxic agents. We evaluated the effects of daily physical (treadmill running) stress or daily exposure to a subclinical dosage of the organophosphate ChE inhibitor paraoxon (PO) on ChE inhibition in blood, diaphragm and selected brain regions in young adult male Sprague-Dawley rats following subacute PYR exposures. In physical stress studies, rats were placed on a treadmill for 90 min each day for 14 days just prior to PYR (0, 3, or 10 mg/kg per day) administration. In PO-PYR interaction studies, rats were treated with PO (0, 0.05, or 0.1 mg/kg per day) 1 h prior to daily PYR (0 or 3 mg/kg per day) administration for 14 consecutive days. Rats were evaluated daily for signs of cholinergic toxicity and were killed 1 h after the final PYR treatment. Forced running increased plasma corticosterone levels throughout the experiment (on days 1, 3, 7 and 14) when measured immediately after termination of stress. PYR-treated rats in the high dosage (10 mg/kg per day) group exhibited slight signs of toxicity (involuntary movements) for the first 6 days, after which tolerance developed. Interestingly, signs of cholinergic toxicity following PYR were slightly but significantly increased in rats forced to run on the treadmill prior to dosing. ChE activities in whole blood and diaphragm were significantly reduced 1 h after the final PYR challenge, and ChE inhibition in diaphragm was significantly greater in stressed rats than in non-stressed controls following high dose PYR (10 mg/kg per day). No significant effects of treadmill running on PYR-induced ChE inhibition in brain regions were noted, however. Repeated subclinical PO exposure had no apparent effect on functional signs of PYR toxicity. As with repeated treadmill running, whole blood and diaphragm ChE activities were significantly reduced 1 h after the final PYR administration, and ChE inhibition was significantly greater with combined PO and PYR exposures. Brain regional ChE activity was significantly inhibited after daily PO exposure, but no increased inhibition was noted following combined PO and PYR dosing. We conclude that, while some stressors may under some conditions affect functional signs of toxicity following repeated pyridostigmine exposures, these changes are likely to occur via alteration of peripheral cholinergic mechanisms and not through enhanced entry of pyridostigmine into the brain.


Subject(s)
Cholinesterase Inhibitors/toxicity , Paraoxon/toxicity , Pyridostigmine Bromide/toxicity , Stress, Psychological/complications , Animals , Cholinesterase Inhibitors/administration & dosage , Cholinesterases/blood , Corticosterone/blood , Diaphragm/drug effects , Diaphragm/enzymology , Dose-Response Relationship, Drug , Drug Interactions , Male , Paraoxon/administration & dosage , Rats , Rats, Sprague-Dawley , Running
3.
Toxicology ; 176(1-2): 39-50, 2002 Jul 01.
Article in English | MEDLINE | ID: mdl-12062928

ABSTRACT

Stress-induced change in the distribution of the drug pyridostigmine (PYR) has been proposed as a contributing factor to unexplained illnesses in Persian Gulf War veterans. We evaluated the effects of two stress models, forced running and forced swimming, on acute PYR (30 mg/kg, p.o.) toxicity and cholinesterase (ChE) inhibition in the blood and selected brain regions of young adult male Sprague-Dawley rats (6 weeks of age). Plasma corticosterone levels were measured at 0, 1 and 3 h after termination of forced swimming or forced running to confirm the induction of stress. PYR was given either immediately before stress (15 min swimming; 20 min running) or immediately after stress (15 min swimming; 90 min running) and cholinergic toxicity and ChE inhibition were evaluated at 1, 2 or 4 h after PYR exposure. Additionally, rats were subjected to either swimming (15 min) or running (90 min) stress, anesthetized, injected with horseradish peroxidase (HRP, 100 mg/kg, transcardial) and brain-regional HRP activity measured as an indicator of altered blood-brain barrier integrity. Both forced swimming and forced running resulted in significant elevations of plasma corticosterone levels. PYR caused cholinergic toxicity at all time-points evaluated. Swimming and running stress had little influence on expression of PYR-induced toxicity, however. Blood ChE activity was generally inhibited 77-91% at 1-4 h after PYR, but rats pretreated with PYR prior to forced swimming showed lesser inhibition (64%) 1 h after dosing, possibly because of swimming-induced hypothermia and delayed absorption of the drug. Minimal changes in ChE activity were noted in frontal cortex, cerebellum and hippocampus following PYR exposure (maximal inhibition 28%), and neither swimming nor running stress affected the degree of inhibition. Neither stress model increased HRP accumulation in any brain region. The results suggest that stress associated with forced running or forced swimming has little effect on acute PYR toxicity, entry of PYR into the brain or PYR-induced brain-regional ChE inhibition.


Subject(s)
Brain/drug effects , Cholinesterase Inhibitors/toxicity , Physical Exertion/drug effects , Pyridostigmine Bromide/toxicity , Stress, Physiological , Administration, Oral , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/physiology , Brain/enzymology , Cholinesterase Inhibitors/administration & dosage , Cholinesterases/blood , Corticosterone/blood , Disease Models, Animal , Exercise Test , Horseradish Peroxidase , Male , Physical Exertion/physiology , Pyridostigmine Bromide/administration & dosage , Rats , Rats, Sprague-Dawley , Running/physiology , Swimming/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...