Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 618(7965): 543-549, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37225983

ABSTRACT

The development of paired appendages was a key innovation during evolution and facilitated the aquatic to terrestrial transition of vertebrates. Largely derived from the lateral plate mesoderm (LPM), one hypothesis for the evolution of paired fins invokes derivation from unpaired median fins via a pair of lateral fin folds located between pectoral and pelvic fin territories1. Whilst unpaired and paired fins exhibit similar structural and molecular characteristics, no definitive evidence exists for paired lateral fin folds in larvae or adults of any extant or extinct species. As unpaired fin core components are regarded as exclusively derived from paraxial mesoderm, any transition presumes both co-option of a fin developmental programme to the LPM and bilateral duplication2. Here, we identify that the larval zebrafish unpaired pre-anal fin fold (PAFF) is derived from the LPM and thus may represent a developmental intermediate between median and paired fins. We trace the contribution of LPM to the PAFF in both cyclostomes and gnathostomes, supporting the notion that this is an ancient trait of vertebrates. Finally, we observe that the PAFF can be bifurcated by increasing bone morphogenetic protein signalling, generating LPM-derived paired fin folds. Our work provides evidence that lateral fin folds may have existed as embryonic anlage for elaboration to paired fins.


Subject(s)
Animal Fins , Biological Evolution , Mesoderm , Zebrafish , Animals , Animal Fins/anatomy & histology , Animal Fins/embryology , Animal Fins/growth & development , Larva/anatomy & histology , Larva/growth & development , Mesoderm/anatomy & histology , Mesoderm/embryology , Mesoderm/growth & development , Zebrafish/anatomy & histology , Zebrafish/embryology , Zebrafish/growth & development , Bone Morphogenetic Proteins/metabolism
2.
Sci Adv ; 8(35): eabn2082, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36044573

ABSTRACT

Endothelial specification is a key event during embryogenesis; however, when, and how, endothelial cells separate from other lineages is poorly understood. In zebrafish, Npas4l is indispensable for endothelial specification by inducing the expression of the transcription factor genes etsrp, tal1, and lmo2. We generated a knock-in reporter in zebrafish npas4l to visualize endothelial progenitors and their derivatives in wild-type and mutant embryos. Unexpectedly, we find that in npas4l mutants, npas4l reporter-expressing cells contribute to the pronephron tubules. Single-cell transcriptomics and live imaging of the early lateral plate mesoderm in wild-type embryos indeed reveals coexpression of endothelial and pronephron markers, a finding confirmed by creERT2-based lineage tracing. Increased contribution of npas4l reporter-expressing cells to pronephron tubules is also observed in tal1 and lmo2 mutants and is reversed in npas4l mutants injected with tal1 mRNA. Together, these data reveal that Npas4l/Tal1/Lmo2 regulate the fate decision between the endothelial and pronephron lineages.

3.
Nat Commun ; 13(1): 1677, 2022 03 30.
Article in English | MEDLINE | ID: mdl-35354817

ABSTRACT

The mesothelium lines body cavities and surrounds internal organs, widely contributing to homeostasis and regeneration. Mesothelium disruptions cause visceral anomalies and mesothelioma tumors. Nonetheless, the embryonic emergence of mesothelia remains incompletely understood. Here, we track mesothelial origins in the lateral plate mesoderm (LPM) using zebrafish. Single-cell transcriptomics uncovers a post-gastrulation gene expression signature centered on hand2 in distinct LPM progenitor cells. We map mesothelial progenitors to lateral-most, hand2-expressing LPM and confirm conservation in mouse. Time-lapse imaging of zebrafish hand2 reporter embryos captures mesothelium formation including pericardium, visceral, and parietal peritoneum. We find primordial germ cells migrate with the forming mesothelium as ventral migration boundary. Functionally, hand2 loss disrupts mesothelium formation with reduced progenitor cells and perturbed migration. In mouse and human mesothelioma, we document expression of LPM-associated transcription factors including Hand2, suggesting re-initiation of a developmental program. Our data connects mesothelium development to Hand2, expanding our understanding of mesothelial pathologies.


Subject(s)
Mesothelioma , Zebrafish , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Epithelium/metabolism , Mesothelioma/genetics , Mice , Transcription Factors/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
4.
Development ; 147(12)2020 06 19.
Article in English | MEDLINE | ID: mdl-32561665

ABSTRACT

The lateral plate mesoderm (LPM) forms the progenitor cells that constitute the heart and cardiovascular system, blood, kidneys, smooth muscle lineage and limb skeleton in the developing vertebrate embryo. Despite this central role in development and evolution, the LPM remains challenging to study and to delineate, owing to its lineage complexity and lack of a concise genetic definition. Here, we outline the processes that govern LPM specification, organization, its cell fates and the inferred evolutionary trajectories of LPM-derived tissues. Finally, we discuss the development of seemingly disparate organ systems that share a common LPM origin.


Subject(s)
Mesoderm/growth & development , Animals , Cardiovascular System/growth & development , Cardiovascular System/metabolism , Cell Differentiation , Cell Lineage , Embryonic Development , Gene Expression Regulation, Developmental , Humans , Mesoderm/cytology , Mesoderm/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Transcription Factors/metabolism
5.
Nat Commun ; 10(1): 3857, 2019 08 26.
Article in English | MEDLINE | ID: mdl-31451684

ABSTRACT

Cardiovascular lineages develop together with kidney, smooth muscle, and limb connective tissue progenitors from the lateral plate mesoderm (LPM). How the LPM initially emerges and how its downstream fates are molecularly interconnected remain unknown. Here, we isolate a pan-LPM enhancer in the zebrafish-specific draculin (drl) gene that provides specific LPM reporter activity from early gastrulation. In toto live imaging and lineage tracing of drl-based reporters captures the dynamic LPM emergence as lineage-restricted mesendoderm field. The drl pan-LPM enhancer responds to the transcription factors EomesoderminA, FoxH1, and MixL1 that combined with Smad activity drive LPM emergence. We uncover specific activity of zebrafish-derived drl reporters in LPM-corresponding territories of several chordates including chicken, axolotl, lamprey, Ciona, and amphioxus, revealing a universal upstream LPM program. Altogether, our work provides a mechanistic framework for LPM emergence as defined progenitor field, possibly representing an ancient mesodermal cell state that predates the primordial vertebrate embryo.


Subject(s)
Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Mesoderm/embryology , Zebrafish Proteins/genetics , Animals , Embryo, Nonmammalian , Embryonic Induction/genetics , Gastrulation/genetics , Intravital Microscopy , Zebrafish
6.
Nat Commun ; 10(1): 1189, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30867425

ABSTRACT

In jawed vertebrates (gnathostomes), Hox genes play an important role in patterning head and jaw formation, but mechanisms coupling Hox genes to neural crest (NC) are unknown. Here we use cross-species regulatory comparisons between gnathostomes and lamprey, a jawless extant vertebrate, to investigate conserved ancestral mechanisms regulating Hox2 genes in NC. Gnathostome Hoxa2 and Hoxb2 NC enhancers mediate equivalent NC expression in lamprey and gnathostomes, revealing ancient conservation of Hox upstream regulatory components in NC. In characterizing a lamprey hoxα2 NC/hindbrain enhancer, we identify essential Meis, Pbx, and Hox binding sites that are functionally conserved within Hoxa2/Hoxb2 NC enhancers. This suggests that the lamprey hoxα2 enhancer retains ancestral activity and that Hoxa2/Hoxb2 NC enhancers are ancient paralogues, which diverged in hindbrain and NC activities. This identifies an ancestral mechanism for Hox2 NC regulation involving a Hox-TALE regulatory circuit, potentiated by inputs from Meis and Pbx proteins and Hox auto-/cross-regulatory interactions.


Subject(s)
Gene Expression Regulation, Developmental/physiology , Genes, Homeobox/physiology , Homeodomain Proteins/metabolism , Neural Crest/embryology , Vertebrates/genetics , Animals , Animals, Genetically Modified , Binding Sites/genetics , Cell Line , Conserved Sequence/physiology , Enhancer Elements, Genetic/genetics , Homeodomain Proteins/genetics , Lampreys , Mice , Mouse Embryonic Stem Cells , Neural Crest/metabolism , Sequence Alignment , Vertebrates/embryology , Zebrafish
7.
Genes Dev ; 32(21-22): 1443-1458, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30366904

ABSTRACT

Bcl9 and Pygopus (Pygo) are obligate Wnt/ß-catenin cofactors in Drosophila, yet their contribution to Wnt signaling during vertebrate development remains unresolved. Combining zebrafish and mouse genetics, we document a conserved, ß-catenin-associated function for BCL9 and Pygo proteins during vertebrate heart development. Disrupting the ß-catenin-BCL9-Pygo complex results in a broadly maintained canonical Wnt response yet perturbs heart development and proper expression of key cardiac regulators. Our work highlights BCL9 and Pygo as selective ß-catenin cofactors in a subset of canonical Wnt responses during vertebrate development. Moreover, our results implicate alterations in BCL9 and BCL9L in human congenital heart defects.


Subject(s)
Heart Defects, Congenital/genetics , Intracellular Signaling Peptides and Proteins/genetics , Transcription Factors/genetics , Wnt Signaling Pathway , Zebrafish Proteins/genetics , Adaptor Proteins, Signal Transducing , Animals , Heart/embryology , Mice , Mutation , Myocardium/metabolism , Zebrafish/embryology , Zebrafish/genetics , beta Catenin/metabolism
8.
Nat Commun ; 9(1): 2001, 2018 05 21.
Article in English | MEDLINE | ID: mdl-29784942

ABSTRACT

The vertebrate heart develops from several progenitor lineages. After early-differentiating first heart field (FHF) progenitors form the linear heart tube, late-differentiating second heart field (SHF) progenitors extend the atrium and ventricle, and form inflow and outflow tracts (IFT/OFT). However, the position and migration of late-differentiating progenitors during heart formation remains unclear. Here, we track zebrafish heart development using transgenics based on the cardiopharyngeal gene tbx1. Live imaging uncovers a tbx1 reporter-expressing cell sheath that continuously disseminates from the lateral plate mesoderm towards the forming heart tube. High-speed imaging and optogenetic lineage tracing corroborates that the zebrafish ventricle forms through continuous addition from the undifferentiated progenitor sheath followed by late-phase accrual of the bulbus arteriosus (BA). FGF inhibition during sheath migration reduces ventricle size and abolishes BA formation, refining the window of FGF action during OFT formation. Our findings consolidate previous end-point analyses and establish zebrafish ventricle formation as a continuous process.


Subject(s)
Stem Cells/cytology , Zebrafish/embryology , Animals , Cell Differentiation , Cell Lineage , Female , Gene Expression Regulation, Developmental , Heart Ventricles/cytology , Heart Ventricles/embryology , Heart Ventricles/metabolism , Male , Mesoderm/embryology , Mesoderm/metabolism , Morphogenesis , Stem Cells/metabolism , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
9.
Nature ; 526(7571): 131-5, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26416748

ABSTRACT

Despite major advances in understanding the molecular and genetic basis of cancer, metastasis remains the cause of >90% of cancer-related mortality. Understanding metastasis initiation and progression is critical to developing new therapeutic strategies to treat and prevent metastatic disease. Prevailing theories hypothesize that metastases are seeded by rare tumour cells with unique properties, which may function like stem cells in their ability to initiate and propagate metastatic tumours. However, the identity of metastasis-initiating cells in human breast cancer remains elusive, and whether metastases are hierarchically organized is unknown. Here we show at the single-cell level that early stage metastatic cells possess a distinct stem-like gene expression signature. To identify and isolate metastatic cells from patient-derived xenograft models of human breast cancer, we developed a highly sensitive fluorescence-activated cell sorting (FACS)-based assay, which allowed us to enumerate metastatic cells in mouse peripheral tissues. We compared gene signatures in metastatic cells from tissues with low versus high metastatic burden. Metastatic cells from low-burden tissues were distinct owing to their increased expression of stem cell, epithelial-to-mesenchymal transition, pro-survival, and dormancy-associated genes. By contrast, metastatic cells from high-burden tissues were similar to primary tumour cells, which were more heterogeneous and expressed higher levels of luminal differentiation genes. Transplantation of stem-like metastatic cells from low-burden tissues showed that they have considerable tumour-initiating capacity, and can differentiate to produce luminal-like cancer cells. Progression to high metastatic burden was associated with increased proliferation and MYC expression, which could be attenuated by treatment with cyclin-dependent kinase (CDK) inhibitors. These findings support a hierarchical model for metastasis, in which metastases are initiated by stem-like cells that proliferate and differentiate to produce advanced metastatic disease.


Subject(s)
Breast Neoplasms/pathology , Disease Progression , Neoplasm Metastasis/pathology , Neoplastic Stem Cells/pathology , Single-Cell Analysis , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Cycle/drug effects , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Separation , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/pathology , Cyclin-Dependent Kinases/antagonists & inhibitors , Disease Models, Animal , Epithelial Cells/drug effects , Epithelial Cells/pathology , Epithelial-Mesenchymal Transition/genetics , Flow Cytometry , Gene Expression Profiling , Genes, myc/genetics , Humans , Mesoderm/metabolism , Mesoderm/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Metastasis/drug therapy , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...