Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Data Brief ; 52: 109765, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38370023

ABSTRACT

We present trajectories from non-equilibrium (in electric field) molecular dynamics (MD) simulations of a kinesin motor domain on tubulin heterodimers with two tubulin heterodimers forming neighbouring microtubule protofilaments. The trajectories are for no field (long equilibrium simulation), for four different electric field orientations (X, -X, Y, -Y) and for the X electric field at four different field strengths. We also provide a trajectory for larger simulation box. Our data enable to analyze the electric field effects on kinesin, which ultimately leads to kinesin detachment. This data set was used to understand the effect of electric field orientation and field strength on the kinetics and energetics of the electro-detachment of kinesin [1].

2.
Comput Struct Biotechnol J ; 21: 1349-1361, 2023.
Article in English | MEDLINE | ID: mdl-36814722

ABSTRACT

Kinesin is a motor protein essential in cellular functions, such as intracellular transport and cell-division, as well as for enabling nanoscopic transport in bio-nanotechnology. Therefore, for effective control of function for nanotechnological applications, it is important to be able to modify the function of kinesin. To circumvent the limitations of chemical modifications, here we identify another potential approach for kinesin control: the use of electric forces. Using full-atom molecular dynamics simulations (247,358 atoms, total time ∼ 4.4 µs), we demonstrate, for the first time, that the kinesin-1 motor domain can be detached from a microtubule by an intense electric field within the nanosecond timescale. We show that this effect is field-direction dependent and field-strength dependent. A detailed analysis of the electric forces and the work carried out by electric field acting on the microtubule-kinesin system shows that it is the combined action of the electric field pulling on the ß-tubulin C-terminus and the electric-field-induced torque on the kinesin dipole moment that causes kinesin detachment from the microtubule. It is shown, for the first time in a mechanistic manner, that an electric field can dramatically affect molecular interactions in a heterologous functional protein assembly. Our results contribute to understanding of electromagnetic field-biomatter interactions on a molecular level, with potential biomedical and bio-nanotechnological applications for harnessing control of protein nanomotors.

3.
Data Brief ; 38: 107337, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34522732

ABSTRACT

We present molecular dynamics (MD) trajectories of a single ring of B-lattice microtubule ring consisting of 13 tubulin heterodimers. The data contain trajectories of this molecular system ran under various conditions (two temperature values, three ionic strength values, three values of electric field (including no field), and four electric field orientations). Our data enable us to analyze the effects of the electric field on microtubule under a variety of conditions. This data set was a basis of our in silico discovery, which demonstrates that the electric field can open microtubule lattice [1].

4.
Phys Chem Chem Phys ; 23(31): 16635-16645, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34323256

ABSTRACT

α-Synuclein is a neuronal protein which adopts multiple conformations. These can be conveniently studied by the spectroscopy of vibrational optical activity (VOA). However, the interpretation of VOA spectra based on quantum-chemical simulations is difficult. To overcome the hampering of the computations by the protein size, we used the Cartesian tensor transfer technique to investigate links between the spectral shapes and protein structure. Vibrational circular dichroism (VCD) and Raman optical activity (ROA) spectra of α-synuclein in disordered, α-helical and ß-sheet (fibril) forms were measured and analyzed on the basis of molecular dynamics and density functional theory computations. For the disordered and α-helical conformers, a high fidelity of the simulated spectra with a reasonable computational cost was achieved. Most experimental spectral features could be assigned to the structure. So far unreported ROA marker bands of the secondary structure were found for the lower-frequency and CH stretching vibrations. Fibril VCD spectra were simulated with a rigid periodic model of the geometry and the results are consistent with previous studies based on cryogenic electron microscopy. The fibrils also give a specific ROA signal, but unlike VCD it is currently not fully explicable by the simulations. In connection with the computational modeling the VOA spectroscopy thus appears as an extremely useful tool for monitoring α-synuclein and other proteins in solutions.


Subject(s)
Molecular Dynamics Simulation , alpha-Synuclein/chemistry , Circular Dichroism , Density Functional Theory , Optical Rotation , Spectrum Analysis, Raman , Vibration
5.
Comput Struct Biotechnol J ; 19: 1488-1496, 2021.
Article in English | MEDLINE | ID: mdl-33815687

ABSTRACT

Modulation of the structure and function of biomaterials is essential for advancing bio-nanotechnology and biomedicine. Microtubules (MTs) are self-assembled protein polymers that are essential for fundamental cellular processes and key model compounds for the design of active bio-nanomaterials. In this in silico study, a 0.5 µs-long all-atom molecular dynamics simulation of a complete MT with approximately 1.2 million atoms in the system indicated that a nanosecond-scale intense electric field can induce the longitudinal opening of the cylindrical shell of the MT lattice, modifying the structure of the MT. This effect is field-strength- and temperature-dependent and occurs on the cathode side. A model was formulated to explain the opening on the cathode side, which resulted from an electric-field-induced imbalance between electric torque on tubulin dipoles and cohesive forces between tubulin heterodimers. Our results open new avenues for electromagnetic modulation of biological and artificial materials through action on noncovalent molecular interactions.

6.
Data Brief ; 30: 105483, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32368577

ABSTRACT

We present molecular dynamics (MD) trajectories of water solutions of eight zwitterionic amino-acids (L- form) glycine (GLY), alanine (ALA), proline (PRO), threonine (THR), leucine (LEU), glutamine (GLN), histidine (HIS) and tyrosine (TYR) using various force field (OPLS-AA, Amber99ff-SB, GROMOS96 54a7, CHARMM19) and water model (SPC/E, TIP3P) combinations. Additionally, we present OPLS-AA molecular dynamics (MD) trajectories for alanine (ALA), leucine (LEU), glutamine (GLN), and tyrosine (TYR) varying the values of major force field parameters: charge on all amino acid atoms, bond length (all amino acid bonds), Lennard-Jones potential epsilon parameter and stiffness of bond angles. Our data enable to uncover sensitivity of molecular dynamics derived analysis to variation of force field and water models and force field parameters. This data set was used to understand the effect of molecular dynamics parameters on dielectric properties of amino acid solutions [1].

7.
Sci Rep ; 9(1): 19721, 2019 12 23.
Article in English | MEDLINE | ID: mdl-31873109

ABSTRACT

Kinesin is a biological molecular nanomotor which converts chemical energy into mechanical work. To fulfill various nanotechnological tasks in engineered environments, the function of biological molecular motors can be altered by artificial chemical modifications. The drawback of this approach is the necessity of designing and creating a new motor construct for every new task. We propose that intense nanosecond-scale pulsed electric field could modify the function of nanomotors. To explore this hypothesis, we performed molecular dynamics simulation of a kinesin motor domain docked on a subunit of its microtubule track - a single tubulin heterodimer. In the simulation, we exposed the kinesin motor domain to intense (100 MV/m) electric field up to 30 ns. We found that both the magnitude and angle of the kinesin dipole moment are affected. Furthermore, we found that the electric field affects contact surface area between kinesin and tubulin, the structure and dynamics of the functionally important kinesin segments, including microtubule binding motifs as well as nucleotide hydrolysis site which power the nanomotor. These findings indicate that external intense nanosecond-scale electric field could alter kinesin behavior. Our results contribute to developing novel electromagnetic methods for modulating the function of biomolecular matter at the nanoscale.


Subject(s)
Electricity , Kinesins/chemistry , Molecular Dynamics Simulation , Kinesins/metabolism , Reproducibility of Results , Time Factors , Tubulin/metabolism
8.
Sci Rep ; 9(1): 10477, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31324834

ABSTRACT

Intense pulsed electric fields are known to act at the cell membrane level and are already being exploited in biomedical and biotechnological applications. However, it is not clear if electric pulses within biomedically-attainable parameters could directly influence intra-cellular components such as cytoskeletal proteins. If so, a molecular mechanism of action could be uncovered for therapeutic applications of such electric fields. To help clarify this question, we first identified that a tubulin heterodimer is a natural biological target for intense electric fields due to its exceptional electric properties and crucial roles played in cell division. Using molecular dynamics simulations, we then demonstrated that an intense - yet experimentally attainable - electric field of nanosecond duration can affect the bß-tubulin's C-terminus conformations and also influence local electrostatic properties at the GTPase as well as the binding sites of major tubulin drugs site. Our results suggest that intense nanosecond electric pulses could be used for physical modulation of microtubule dynamics. Since a nanosecond pulsed electric field can penetrate the tissues and cellular membranes due to its broadband spectrum, our results are also potentially significant for the development of new therapeutic protocols.


Subject(s)
Electric Stimulation , Molecular Dynamics Simulation , Tubulin/physiology , Binding Sites , Electric Stimulation/methods , Humans , Static Electricity
9.
Chirality ; 30(1): 55-64, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29083053

ABSTRACT

The transition dipole coupling model allows to vary systematically many parameters, such as chromophore geometries and transition dipoles. We used it to explore conditions favorable to chirality enhancement observed in many experiments on protein amyloidal precipitates. Stacking of ß-sheet planes has been identified as a particularly powerful mechanism of the enhancement.


Subject(s)
Multiprotein Complexes/chemistry , Optical Rotation , Models, Molecular , Stereoisomerism
10.
Anal Chem ; 88(17): 8878-85, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27525502

ABSTRACT

Detection and resolution of simple monosaccharides are difficult tasks because their structure is quite similar. The present study shows that circularly polarized luminescence (CPL) induced in europium complexes provides very specific spectral patterns for fructose, mannose, glucose, and galactose. Differences were also observed between bare Eu(3+) ion and its complexes, when interacting with these sugars. The CPL spectra were measured on a Raman optical activity (ROA) spectrometer, which ensured high fluorescence intensity owing to the strong 532 nm laser excitation. The induced fluorescence was recorded in the same spectrum as the vibrational Raman bands. On the basis of the ligand field theory, most fluorescence spectral peaks could be assigned to f-shell europium transitions. Additional information on the interaction of the lanthanide with the sugar component was provided by measurement of time-dependent fluorescence, as formation of different complexes led to variations in fluorescence decay times. In nuclear magnetic resonance (NMR), the paramagnetic metal ion interacting with the sugars caused specific changes in (13)C chemical shifts. The spectroscopic data and molecular dynamics modeling showed that the interaction between the monosaccharides and Eu ion is rather weak due to the competition of the OH sugar groups with water molecules. However, multiple binding modes are possible, which contributes to the complexity and specificity of the spectra. The induced chirality and fluorescence spectra thus appear to be convenient means for monosaccharide detection and identification.


Subject(s)
Europium/chemistry , Sugars/analysis , Luminescence , Luminescent Measurements , Magnetic Resonance Spectroscopy , Molecular Dynamics Simulation , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...