Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
JCO Precis Oncol ; 6: e2200084, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36331239

ABSTRACT

PURPOSE: Polygenic risk scores (PRSs) for breast cancer (BC) risk stratification have been developed primarily in women of European ancestry. Their application to women of non-European ancestry has lagged because of the lack of a formal approach to incorporate genetic ancestry and ancestry-dependent variant frequencies and effect sizes. Here, we propose a multiple-ancestry PRS (MA-PRS) that addresses these issues and may be useful in the development of equitable PRSs across other cancers and common diseases. MATERIALS AND METHODS: Women referred for hereditary cancer testing were divided into consecutive cohorts for development (n = 189,230) and for independent validation (n = 89,126). Individual genetic composition as fractions of three reference ancestries (African, East Asian, and European) was determined from ancestry-informative single-nucleotide polymorphisms. The MA-PRS is a combination of three ancestry-specific PRSs on the basis of genetic ancestral composition. Stratification of risk was evaluated by multivariable logistic regression models controlling for family cancer history. Goodness-of-fit analysis compared expected with observed relative risks by quantiles of the MA-PRS distribution. RESULTS: In independent validation, the MA-PRS was significantly associated with BC risk in the full cohort (odds ratio, 1.43; 95% CI, 1.40 to 1.46; P = 8.6 × 10-308) and within each major ancestry. The top decile of the MA-PRS consistently identified patients with two-fold increased risk of developing BC. Goodness-of-fit tests showed that the MA-PRS was well calibrated and predicted BC risk accurately in the tails of the distribution for both European and non-European women. CONCLUSION: The MA-PRS uses genetic ancestral composition to expand the utility of polygenic risk prediction to non-European women. Inclusion of genetic ancestry in polygenic risk prediction presents an opportunity for more personalized treatment decisions for women of varying and mixed ancestries.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Risk Factors , Multifactorial Inheritance/genetics
2.
Article in English | MEDLINE | ID: mdl-32923914

ABSTRACT

PURPOSE: Hereditary cancer genetic testing can inform personalized medical management for individuals at increased cancer risk. However, many variants in cancer predisposition genes are individually rare, and traditional tools may be insufficient to evaluate pathogenicity. This analysis presents data on variant classification and reclassification over a 20-year period. PATIENTS AND METHODS: This is a retrospective analysis of > 1.9 million individuals who received hereditary cancer genetic testing from a single clinical laboratory (March 1997 to December 2017). Variant classification included review of evidence from traditional tools (eg, population frequency databases, literature) and laboratory-developed tools (eg, novel statistical methods, in-house RNA analysis) by a multidisciplinary expert committee. Variants may have been reclassified more than once and with more than one line of evidence. RESULTS: In this time period, 62,842 unique variants were observed across 25 cancer predisposition genes, and 2,976 variants were reclassified. Overall, 82.1% of reclassification events were downgrades (eg, variant of uncertain significance [VUS] to benign), and 17.9% were upgrades (eg, VUS to pathogenic). Among reclassified variants, 82.8% were initially classified as VUS, and 47.5% were identified in ≤ 20 individuals (allele frequency ≤ 0.001%). Laboratory-developed tools were used in 72.3% of variant reclassification events, which affected > 600,000 individuals. More than 1.3 million patients were identified as carrying a variant that was reclassified within this 20-year time period. CONCLUSION: The variant classification program used by the laboratory evaluated here enabled the reclassification of variants that were individually rare. Laboratory-developed tools were a key component of this program and were used in the majority of reclassifications. This demonstrates the importance of using robust and novel tools to reclassify rare variants to appropriately inform personalized medical management.

3.
Hum Mol Genet ; 24(18): 5093-108, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26085575

ABSTRACT

Fanconi anemia (FA) is a rare inherited disorder clinically characterized by congenital malformations, progressive bone marrow failure and cancer susceptibility. At the cellular level, FA is associated with hypersensitivity to DNA-crosslinking genotoxins. Eight of 17 known FA genes assemble the FA E3 ligase complex, which catalyzes monoubiquitination of FANCD2 and is essential for replicative DNA crosslink repair. Here, we identify the first FA patient with biallelic germline mutations in the ubiquitin E2 conjugase UBE2T. Both mutations were aluY-mediated: a paternal deletion and maternal duplication of exons 2-6. These loss-of-function mutations in UBE2T induced a cellular phenotype similar to biallelic defects in early FA genes with the absence of FANCD2 monoubiquitination. The maternal duplication produced a mutant mRNA that could encode a functional protein but was degraded by nonsense-mediated mRNA decay. In the patient's hematopoietic stem cells, the maternal allele with the duplication of exons 2-6 spontaneously reverted to a wild-type allele by monoallelic recombination at the duplicated aluY repeat, thereby preventing bone marrow failure. Analysis of germline DNA of 814 normal individuals and 850 breast cancer patients for deletion or duplication of UBE2T exons 2-6 identified the deletion in only two controls, suggesting aluY-mediated recombinations within the UBE2T locus are rare and not associated with an increased breast cancer risk. Finally, a loss-of-function germline mutation in UBE2T was detected in a high-risk breast cancer patient with wild-type BRCA1/2. Cumulatively, we identified UBE2T as a bona fide FA gene (FANCT) that also may be a rare cancer susceptibility gene.


Subject(s)
Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Germ Cells/metabolism , Germ-Line Mutation , Stem Cells/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Adolescent , Adult , Alleles , Breast Neoplasms/genetics , Child , Child, Preschool , Chromosome Breakage , DNA Damage , Exons , Fanconi Anemia/diagnosis , Fanconi Anemia Complementation Group D2 Protein/genetics , Fanconi Anemia Complementation Group D2 Protein/metabolism , Female , Fibroblasts/metabolism , Gene Deletion , Gene Duplication , Gene Knockout Techniques , Genetic Complementation Test , Humans , Male , Middle Aged , Nonsense Mediated mRNA Decay , Phenotype , RNA, Messenger/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitination
4.
Breast Cancer Res Treat ; 147(1): 119-32, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25085752

ABSTRACT

BRCA1 and BRCA2 sequencing analysis detects variants of uncertain clinical significance in approximately 2 % of patients undergoing clinical diagnostic testing in our laboratory. The reclassification of these variants into either a pathogenic or benign clinical interpretation is critical for improved patient management. We developed a statistical variant reclassification tool based on the premise that probands with disease-causing mutations are expected to have more severe personal and family histories than those having benign variants. The algorithm was validated using simulated variants based on approximately 145,000 probands, as well as 286 BRCA1 and 303 BRCA2 true variants. Positive and negative predictive values of ≥99 % were obtained for each gene. Although the history weighting algorithm was not designed to detect alleles of lower penetrance, analysis of the hypomorphic mutations c.5096G>A (p.Arg1699Gln; BRCA1) and c.7878G>C (p.Trp2626Cys; BRCA2) indicated that the history weighting algorithm is able to identify some lower penetrance alleles. The history weighting algorithm is a powerful tool that accurately assigns actionable clinical classifications to variants of uncertain clinical significance. While being developed for reclassification of BRCA1 and BRCA2 variants, the history weighting algorithm is expected to be applicable to other cancer- and non-cancer-related genes.


Subject(s)
Algorithms , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/classification , Breast Neoplasms/genetics , Genetic Predisposition to Disease , Genetic Testing , Genetic Variation/genetics , Case-Control Studies , Female , Humans , Neoplasm Staging , Prognosis
5.
Hum Mol Genet ; 21(18): 3993-4006, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22678057

ABSTRACT

Single-nucleotide substitutions and small in-frame insertions or deletions identified in human breast cancer susceptibility genes BRCA1 and BRCA2 are frequently classified as variants of unknown clinical significance (VUS) due to the availability of very limited information about their functional consequences. Such variants can most reliably be classified as pathogenic or non-pathogenic based on the data of their co-segregation with breast cancer in affected families and/or their co-occurrence with a pathogenic mutation. Biological assays that examine the effect of variants on protein function can provide important information that can be used in conjunction with available familial data to determine the pathogenicity of VUS. In this report, we have used a previously described mouse embryonic stem (mES) cell-based functional assay to characterize eight BRCA2 VUS that affect highly conserved amino acid residues and map to the N-terminal PALB2-binding or the C-terminal DNA-binding domains. For several of these variants, very limited co-segregation information is available, making it difficult to determine their pathogenicity. Based on their ability to rescue the lethality of Brca2-deficient mES cells and their effect on sensitivity to DNA-damaging agents, homologous recombination and genomic integrity, we have classified these variants as pathogenic or non-pathogenic. In addition, we have used homology-based modeling as a predictive tool to assess the effect of some of these variants on the structural integrity of the C-terminal DNA-binding domain and also generated a knock-in mouse model to analyze the physiological significance of a residue reported to be essential for the interaction of BRCA2 with meiosis-specific recombinase, DMC1.


Subject(s)
BRCA2 Protein/genetics , Breast Neoplasms/genetics , Embryonic Stem Cells/metabolism , Mutation , Nuclear Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Amino Acid Sequence , Animals , BRCA2 Protein/chemistry , Cell Cycle Proteins , Cell Survival , Cells, Cultured , Chromosome Mapping , Conserved Sequence , DNA Breaks, Double-Stranded , DNA Repair , DNA-Binding Proteins , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/physiology , Fanconi Anemia Complementation Group N Protein , Female , Genetic Association Studies , Humans , Likelihood Functions , Male , Mice , Mice, Transgenic , Mitomycin/pharmacology , Models, Molecular , Mutagens/pharmacology , Protein Binding , Protein Interaction Domains and Motifs/genetics , Protein Structure, Quaternary , Structural Homology, Protein
6.
Nat Genet ; 42(10): 833-9, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20802477

ABSTRACT

We report a high-quality draft genome sequence of the domesticated apple (Malus × domestica). We show that a relatively recent (>50 million years ago) genome-wide duplication (GWD) has resulted in the transition from nine ancestral chromosomes to 17 chromosomes in the Pyreae. Traces of older GWDs partly support the monophyly of the ancestral paleohexaploidy of eudicots. Phylogenetic reconstruction of Pyreae and the genus Malus, relative to major Rosaceae taxa, identified the progenitor of the cultivated apple as M. sieversii. Expansion of gene families reported to be involved in fruit development may explain formation of the pome, a Pyreae-specific false fruit that develops by proliferation of the basal part of the sepals, the receptacle. In apple, a subclade of MADS-box genes, normally involved in flower and fruit development, is expanded to include 15 members, as are other gene families involved in Rosaceae-specific metabolism, such as transport and assimilation of sorbitol.


Subject(s)
Gene Duplication , Genes, Plant/genetics , Genome, Plant , Malus/genetics , Flowers/genetics , Flowers/growth & development , Fruit/genetics , Fruit/growth & development , Genetic Linkage , Genome-Wide Association Study , Malus/growth & development , Phylogeny
7.
J Clin Oncol ; 28(22): 3570-6, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20606085

ABSTRACT

PURPOSE: The prevalence of BRCA(1/2) mutations in germline DNA from unselected ovarian cancer patients is 11% to 15.3%. It is important to determine the frequency of somatic BRCA(1/2) changes, given the sensitivity of BRCA-mutated cancers to poly (ADP ribose) polymerase-1 (PARP1) inhibitors and platinum analogs. PATIENTS AND METHODS: In 235 unselected ovarian cancers, BRCA(1/2) was sequenced in 235, assessed by copy number analysis in 95, and tiling arrays in 65. 113 tumors were sequenced for TP53. BRCA(1/2) transcript levels were assessed by quantitative polymerase chain reaction in 220. When available for tumors with BRCA(1/2) mutations, germline DNA was sequenced. RESULTS: Forty-four mutations (19%) in BRCA1 (n = 31)/BRCA2 (n = 13) were detected, including one homozygous BRCA1 intragenic deletion. BRCA(1/2) mutations were particularly common (23%) in high-grade serous cancers. In 28 patients with available germline DNA, nine (42.9%) of 21 and two (28.6%) of seven BRCA1 and BRCA2 mutations were demonstrated to be somatic, respectively. Five mutations not previously identified in germline DNA were more commonly somatic than germline (four of 11 v one of 17; P = .062). There was a positive association between BRCA1 and TP53 mutations (P = .012). BRCA(1/2) mutations were associated with improved progression-free survival (PFS) after platinum-based chemotherapy in univariate (P = .032; hazard ratio [HR] = 0.65; 95% CI, 0.43 to 0.98) and multivariate (P = .019) analyses. BRCA(1/2) deficiency, defined as BRCA(1/2) mutations or expression loss (in 24 [13.3%] BRCA(1/2)-wild-type cancers), was present in 67 ovarian cancers (30%) and was also significantly associated with PFS in univariate (P = .026; HR = 0.67; 95% CI, 0.47 to 0.96) and multivariate (P = .008) analyses. CONCLUSION: BRCA(1/2) somatic and germline mutations and expression loss are sufficiently common in ovarian cancer to warrant assessment for prediction of benefit in clinical trials of PARP1 inhibitors.


Subject(s)
Antineoplastic Agents/therapeutic use , Genes, BRCA1 , Genes, BRCA2 , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Poly(ADP-ribose) Polymerase Inhibitors , Adult , Aged , Aged, 80 and over , Disease-Free Survival , Female , Gene Deletion , Germ-Line Mutation , Humans , Middle Aged , Mutation , Poly (ADP-Ribose) Polymerase-1
8.
Cancer ; 115(10): 2222-33, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19241424

ABSTRACT

BACKGROUND: In women at increased risk for breast and ovarian cancer, the identification of a mutation in breast cancer gene 1 (BRCA1) and BRCA2 has important implications for screening and prevention counseling. Uncertainty regarding the role of BRCA1 and BRCA2 testing in high-risk women from diverse ancestral backgrounds exists because of variability in prevalence estimates of deleterious (disease-associated) mutations in non-white populations. In this study, the authors examined the prevalence of BRCA1 and BRCA2 mutations in an ethnically diverse group of women who were referred for genetic testing. METHODS: In this cross-sectional analysis, the prevalence of BRCA1 and BRCA2 mutations was assessed in a group of non-Ashkenazi Jewish women who underwent genetic testing. RESULTS: From 1996 to 2006, 46,276 women who met study criteria underwent DNA full-sequence analysis of the BRCA1 and BRCA2 genes. Deleterious mutations were identified in 12.5% of women, and recurrent deleterious mutations (prevalence >2%) were identified in all ancestral groups. Women of non-European descent were younger (mean age, 45.9 years; standard deviation [SD], 11.6 years) than European women (mean age, 50 years; SD, 11.9 years; P < .001). Women of African (15.6%; odds ratio [OR], 1.3 [95% confidence interval (95% CI), 1.1-1.5]) and Latin American (14.8%; OR, 1.2 [95% CI, 1.1-1.4]) ancestries had a significantly higher prevalence of deleterious BRCA1 and BRCA2 mutations compared with women of Western European ancestry (12.1%), primarily because of an increased prevalence of BRCA1 mutations in those 2 groups. Non-European ethnicity was associated strongly with having a variant of uncertain significance; however, reclassification decreased variant reporting (from 12.8%-->5.9%), and women of African ancestry experienced the largest decline (58%). CONCLUSIONS: Mutation prevalence was found to be high among women who were referred for clinical BRCA1 and BRCA2 testing, and the risk was similar across diverse ethnicities. BRCA1 and BRCA2 testing is integral to cancer risk assessment in all high-risk women.


Subject(s)
Breast Neoplasms/ethnology , Breast Neoplasms/genetics , Genes, BRCA1 , Genes, BRCA2 , Adult , Age Factors , Asian People/statistics & numerical data , Black People/statistics & numerical data , Family Health , Female , Humans , Latin America/ethnology , Middle Aged , Middle East/ethnology , Minority Health , Mutation , White People/statistics & numerical data
9.
J Biotechnol ; 136(1-2): 38-43, 2008 Aug 31.
Article in English | MEDLINE | ID: mdl-18538432

ABSTRACT

A new approach to sequencing and assembling a highly heterozygous genome, that of grape, species Vitis vinifera cv Pinot Noir, is described. The combining of genome shotgun of paired reads produced by Sanger sequencing and sequencing by synthesis of unpaired reads was shown to be an efficient procedure for decoding a complex genome. About 2 million SNPs and more than a million heterozygous gaps have been identified in the 500 Mb genome of grape. More than 91% of the sequence assembled into 58,611 contigs is now anchored to the 19 linkage groups of V. vinifera.


Subject(s)
Chromosome Mapping/methods , Corynebacterium/genetics , Genome, Plant/genetics , Open Reading Frames/genetics , Plant Proteins/genetics , Sequence Analysis, DNA/methods , Vitis/genetics , Base Sequence , Molecular Sequence Data
10.
Cancer Res ; 68(9): 3523-31, 2008 May 01.
Article in English | MEDLINE | ID: mdl-18451181

ABSTRACT

The assessment of the influence of many rare BRCA2 missense mutations on cancer risk has proved difficult. A multifactorial likelihood model that predicts the odds of cancer causality for missense variants is effective, but is limited by the availability of family data. As an alternative, we developed functional assays that measure the influence of missense mutations on the ability of BRCA2 to repair DNA damage by homologous recombination and to control centriole amplification. We evaluated 22 missense mutations from the BRCA2 DNA binding domain (DBD) that were identified in multiple breast cancer families using these assays and compared the results with those from the likelihood model. Thirteen variants inactivated BRCA2 function in at least one assay; two others truncated BRCA2 by aberrant splicing; and seven had no effect on BRCA2 function. Of 10 variants with odds in favor of causality in the likelihood model of 50:1 or more and a posterior probability of pathogenicity of 0.99, eight inactivated BRCA2 function and the other two caused splicing defects. Four variants and four controls displaying odds in favor of neutrality of 50:1 and posterior probabilities of pathogenicity of at least 1 x 10(-3) had no effect on function in either assay. The strong correlation between the functional assays and likelihood model data suggests that these functional assays are an excellent method for identifying inactivating missense mutations in the BRCA2 DBD and that the assays may be a useful addition to models that predict the likelihood of cancer in carriers of missense mutations.


Subject(s)
Breast Neoplasms/classification , Breast Neoplasms/genetics , Genes, BRCA2 , Genetic Testing/methods , Polymorphism, Single Nucleotide/physiology , Base Sequence , Breast Neoplasms/diagnosis , Causality , Cells, Cultured , DNA Mutational Analysis , DNA Repair/genetics , Exons/genetics , Female , Genes, BRCA2/physiology , Genetic Heterogeneity , Genetic Predisposition to Disease , Humans , Mutation, Missense/physiology , Pedigree , Protein Binding , RNA Splice Sites/genetics , Rad51 Recombinase/metabolism , Uncertainty
11.
PLoS One ; 2(12): e1326, 2007 Dec 19.
Article in English | MEDLINE | ID: mdl-18094749

ABSTRACT

BACKGROUND: Worldwide, grapes and their derived products have a large market. The cultivated grape species Vitis vinifera has potential to become a model for fruit trees genetics. Like many plant species, it is highly heterozygous, which is an additional challenge to modern whole genome shotgun sequencing. In this paper a high quality draft genome sequence of a cultivated clone of V. vinifera Pinot Noir is presented. PRINCIPAL FINDINGS: We estimate the genome size of V. vinifera to be 504.6 Mb. Genomic sequences corresponding to 477.1 Mb were assembled in 2,093 metacontigs and 435.1 Mb were anchored to the 19 linkage groups (LGs). The number of predicted genes is 29,585, of which 96.1% were assigned to LGs. This assembly of the grape genome provides candidate genes implicated in traits relevant to grapevine cultivation, such as those influencing wine quality, via secondary metabolites, and those connected with the extreme susceptibility of grape to pathogens. Single nucleotide polymorphism (SNP) distribution was consistent with a diffuse haplotype structure across the genome. Of around 2,000,000 SNPs, 1,751,176 were mapped to chromosomes and one or more of them were identified in 86.7% of anchored genes. The relative age of grape duplicated genes was estimated and this made possible to reveal a relatively recent Vitis-specific large scale duplication event concerning at least 10 chromosomes (duplication not reported before). CONCLUSIONS: Sanger shotgun sequencing and highly efficient sequencing by synthesis (SBS), together with dedicated assembly programs, resolved a complex heterozygous genome. A consensus sequence of the genome and a set of mapped marker loci were generated. Homologous chromosomes of Pinot Noir differ by 11.2% of their DNA (hemizygous DNA plus chromosomal gaps). SNP markers are offered as a tool with the potential of introducing a new era in the molecular breeding of grape.


Subject(s)
Consensus Sequence , Genome, Plant , Heterozygote , Vitis/genetics , Chromosomes, Plant , DNA, Plant/genetics , Evolution, Molecular , Phenols/metabolism , Plant Diseases/genetics , Polymorphism, Single Nucleotide , Terpenes/metabolism , Transcription Factors/metabolism , Vitis/metabolism
12.
Am J Hum Genet ; 81(5): 873-83, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17924331

ABSTRACT

Mutation screening of the breast and ovarian cancer-predisposition genes BRCA1 and BRCA2 is becoming an increasingly important part of clinical practice. Classification of rare nontruncating sequence variants in these genes is problematic, because it is not known whether these subtle changes alter function sufficiently to predispose cells to cancer development. Using data from the Myriad Genetic Laboratories database of nearly 70,000 full-sequence tests, we assessed the clinical significance of 1,433 sequence variants of unknown significance (VUSs) in the BRCA genes. Three independent measures were employed in the assessment: co-occurrence in trans of a VUS with known deleterious mutations; detailed analysis, by logistic regression, of personal and family history of cancer in VUS-carrying probands; and, in a subset of probands, an analysis of cosegregation with disease in pedigrees. For each of these factors, a likelihood ratio was computed under the hypothesis that the VUSs were equivalent to an "average" deleterious mutation, compared with neutral, with respect to risk. The likelihood ratios derived from each component were combined to provide an overall assessment for each VUS. A total of 133 VUSs had odds of at least 100 : 1 in favor of neutrality with respect to risk, whereas 43 had odds of at least 20 : 1 in favor of being deleterious. VUSs with evidence in favor of causality were those that were predicted to affect splicing, fell at positions that are highly conserved among BRCA orthologs, and were more likely to be located in specific domains of the proteins. In addition to their utility for improved genetics counseling of patients and their families, the global assessment reported here will be invaluable for validation of functional assays, structural models, and in silico analyses.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Genetic Predisposition to Disease , Mutation/genetics , Sequence Analysis, DNA , Adult , Aged , Female , Humans , Likelihood Functions , Male , Middle Aged , Odds Ratio
13.
Cancer Res ; 66(4): 2019-27, 2006 Feb 15.
Article in English | MEDLINE | ID: mdl-16489001

ABSTRACT

Classification of rare missense variants as neutral or disease causing is a challenge and has important implications for genetic counseling. A multifactorial likelihood model for classification of unclassified variants in BRCA1 and BRCA2 has previously been developed, which uses data on co-occurrence of the unclassified variant with pathogenic mutations in the same gene, cosegregation of the unclassified variant with affected status, and Grantham analysis of the fit between the missense substitution and the evolutionary range of variation observed at its position in the protein. We have further developed this model to take into account relevant features of BRCA1- and BRCA2-associated tumors, such as the characteristic histopathology and immunochemical profiles associated with pathogenic mutations in BRCA1, and the fact that approximately 80% of tumors from BRCA1 and BRCA2 carriers undergo inactivation of the wild-type allele by loss of heterozygosity. We examined 10 BRCA1 and 15 BRCA2 unclassified variants identified in Australian, multiple-case breast cancer families. By a combination of genetic, in silico, and histopathologic analyses, we were able to classify one BRCA1 variant as pathogenic and six BRCA1 and seven BRCA2 variants as neutral. Five of these neutral variants were also found in at least 1 of 180 healthy controls, suggesting that screening a large number of appropriate controls might be a useful adjunct to other methods for evaluation of unclassified variants.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , DNA, Neoplasm/genetics , Genes, BRCA1 , Genes, BRCA2 , Alleles , Base Sequence , Female , Humans , Immunohistochemistry , Loss of Heterozygosity , Middle Aged , Models, Genetic , Mutation , Mutation, Missense
14.
Science ; 297(5585): 1301-10, 2002 Aug 23.
Article in English | MEDLINE | ID: mdl-12142439

ABSTRACT

The compact genome of Fugu rubripes has been sequenced to over 95% coverage, and more than 80% of the assembly is in multigene-sized scaffolds. In this 365-megabase vertebrate genome, repetitive DNA accounts for less than one-sixth of the sequence, and gene loci occupy about one-third of the genome. As with the human genome, gene loci are not evenly distributed, but are clustered into sparse and dense regions. Some "giant" genes were observed that had average coding sequence sizes but were spread over genomic lengths significantly larger than those of their human orthologs. Although three-quarters of predicted human proteins have a strong match to Fugu, approximately a quarter of the human proteins had highly diverged from or had no pufferfish homologs, highlighting the extent of protein evolution in the 450 million years since teleosts and mammals diverged. Conserved linkages between Fugu and human genes indicate the preservation of chromosomal segments from the common vertebrate ancestor, but with considerable scrambling of gene order.


Subject(s)
Genome, Human , Genome , Sequence Analysis, DNA , Takifugu/genetics , Animals , Biological Evolution , Computational Biology , Conserved Sequence , DNA Transposable Elements , Evolution, Molecular , Exons , Fish Proteins/chemistry , Fish Proteins/genetics , Gene Duplication , Gene Order , Genomics , Humans , Introns , Physical Chromosome Mapping , Proteins/chemistry , Proteins/genetics , Proteome , Repetitive Sequences, Nucleic Acid , Synteny
15.
Science ; 296(5565): 92-100, 2002 Apr 05.
Article in English | MEDLINE | ID: mdl-11935018

ABSTRACT

The genome of the japonica subspecies of rice, an important cereal and model monocot, was sequenced and assembled by whole-genome shotgun sequencing. The assembled sequence covers 93% of the 420-megabase genome. Gene predictions on the assembled sequence suggest that the genome contains 32,000 to 50,000 genes. Homologs of 98% of the known maize, wheat, and barley proteins are found in rice. Synteny and gene homology between rice and the other cereal genomes are extensive, whereas synteny with Arabidopsis is limited. Assignment of candidate rice orthologs to Arabidopsis genes is possible in many cases. The rice genome sequence provides a foundation for the improvement of cereals, our most important crops.


Subject(s)
Genome, Plant , Oryza/genetics , Sequence Analysis, DNA , Arabidopsis/genetics , Chromosome Mapping , Chromosomes/genetics , Computational Biology , Conserved Sequence , DNA, Plant/genetics , Databases, Nucleic Acid , Edible Grain/genetics , Gene Duplication , Genes, Plant , Genomics , Oryza/metabolism , Oryza/physiology , Phosphate Transport Proteins/genetics , Plant Diseases , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Structures/genetics , Repetitive Sequences, Nucleic Acid , Sequence Homology, Nucleic Acid , Software , Synteny , Transcription Factors/genetics
16.
J Clin Oncol ; 20(6): 1480-90, 2002 Mar 15.
Article in English | MEDLINE | ID: mdl-11896095

ABSTRACT

PURPOSE: To assess the characteristics that correlate best with the presence of mutations in BRCA1 and BRCA2 in individuals tested in a clinical setting. PATIENTS AND METHODS: The results of 10,000 consecutive gene sequence analyses performed to identify mutations anywhere in the BRCA1 and BRCA2 genes (7,461 analyses) or for three specific Ashkenazi Jewish founder mutations (2,539 analyses) were correlated with personal and family history of cancer, ancestry, invasive versus noninvasive breast neoplasia, and sex. RESULTS: Mutations were identified in 1,720 (17.2%) of the 10,000 individuals tested, including 968 (20%) of 4,843 women with breast cancer and 281 (34%) of 824 with ovarian cancer, and the prevalence of mutations was correlated with specific features of the personal and family histories of the individuals tested. Mutations were as prevalent in high-risk women of African (25 [19%] of 133) and other non-Ashkenazi ancestries as those of European ancestry (712 [16%] of 4379) and were significantly less prevalent in women diagnosed before 50 years of age with ductal carcinoma in situ than with invasive breast cancer (13% v 24%, P =.0007). Of the 74 mutations identified in individuals of Ashkenazi ancestry through full sequence analysis of both BRCA1 and BRCA2, 16 (21.6%) were nonfounder mutations, including seven in BRCA1 and nine in BRCA2. Twenty-one (28%) of 76 men with breast cancer carried mutations, of which more than one third occurred in BRCA1. CONCLUSION: Specific features of personal and family history can be used to assess the likelihood of identifying a mutation in BRCA1 or BRCA2 in individuals tested in a clinical setting.


Subject(s)
Breast Neoplasms/genetics , Neoplasm Proteins/genetics , Adult , BRCA2 Protein/genetics , Breast Neoplasms, Male/genetics , Chi-Square Distribution , DNA Mutational Analysis , Female , Founder Effect , Genes, BRCA1 , Genetic Predisposition to Disease , Genetic Testing , Germ-Line Mutation , Humans , Jews/genetics , Male , Ovarian Neoplasms/genetics , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...