Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Cell Cardiol ; 27(10): 2167-76, 1995 Oct.
Article in English | MEDLINE | ID: mdl-8576933

ABSTRACT

Low flow ischemia with stable hemodynamic function can result in partial metabolic recovery characterized by an increase in phosphocreatine (PCr). Prior data suggest that glycolytic production of adenosine triphosphate (ATP) may be critical for this recovery and that the ATP produced by oxidative phosphorylation alone may be insufficient. This study tested the hypotheses that, during moderate low flow ischemia, (a) metabolic recovery is dependent on glycolytic production of ATP, and, therefore, (b) a mitochondrial substrate such as pyruvate alone is inadequate to allow metabolic recovery. High energy phosphates, pH, and lactate release were measured during 2 h of moderate low flow ischemia. Hearts were perfused with either a glycolytic plus mitochondrial substrate (glucose, insulin and pyruvate) or a mitochondrial substrate alone (pyruvate). Flow reductions required to reduce PCr by approximately 8% resulted in stable and equal reductions of rate-pressure product in each group. PCr recovered fully during the ischemic period in control hearts with glycolytic substrate, associated with preservation of normal end-diastolic pressure, and increased lactate release during the first hour of ischemia. Reperfusion of these hearts restored hemodynamic function and increased PCr above baseline values. In contrast, the use of pyruvate alone as a substrate resulted in a progressive fall of PCr during ischemia, increased end-diastolic pressure, and no significant increase in lactate release. Reperfusion in these hearts restored hemodynamic function, but did not result in normalization of PCr. Both groups had significant reductions in ATP during ischemia. Recovery of PCr during ongoing moderate low flow ischemia is observed in the presence of mixed glycolytic and mitochondrial substrates (glucose, insulin and pyruvate) but is not observed with pyruvate as a sole mitochondrial substrate. These data support a critical role for glycolytic flux under these conditions, suggesting that ATP generated solely by oxidative phosphorylation is not sufficient to promote metabolic recovery or maintain diastolic function during moderate low flow ischemia.


Subject(s)
Adenosine Triphosphate/metabolism , Glucose/metabolism , Glycolysis , Myocardial Ischemia/metabolism , Pyruvates/metabolism , Adenosine Diphosphate/metabolism , Animals , Coronary Circulation , Insulin/pharmacology , Lactates/biosynthesis , Magnetic Resonance Spectroscopy , Male , Models, Biological , Myocardial Reperfusion , Oxidative Phosphorylation , Phosphocreatine/metabolism , Pyruvic Acid , Rats , Rats, Sprague-Dawley
2.
Am J Physiol ; 268(3 Pt 2): H935-44, 1995 Mar.
Article in English | MEDLINE | ID: mdl-7900892

ABSTRACT

Limitation of myocardial injury and infarction has been demonstrated by interventions such as ischemic preconditioning or the use of pyruvate as a substrate, which reduces glycogen content before, and acidosis during, ischemia. An isolated perfused rat heart model of global ischemia was employed to test the hypothesis that glycogen depletion reduces ischemic injury as measured by creatine kinase release. 31P-nuclear magnetic resonance spectroscopy was used to measure high-energy phosphates (ATP and phosphocreatine), phosphomonoesters (PME), and intracellular pH. Compared with control glucose-perfused hearts with normal glycogen content (1.49 +/- 0.13 mg Glc/g wet wt), glycogen-depleted pyruvate, ischemic preconditioned, and glycogen-depleted glucose hearts all had reduced glycogen content before ischemia (0.62 +/- 0.16, 0.81 +/- 0.10, and 0.67 +/- 0.12 mg Glc/g wet wt, respectively; P = 0.003) and significantly higher pH at the end of ischemia (5.85 +/- 0.02, 6.33 +/- 0.06, 6.24 +/- 0.04, and 6.12 +/- 0.02 in control, glycogen-depleted pyruvate, preconditioned, and glycogen-depleted glucose-perfused hearts, respectively; P < 0.01), although acidification during the initial phase of ischemia was differentially affected by the three interventions. Glycogen-depleted pyruvate and preconditioned hearts had reduced PME accumulation, greater recovery of function and phosphocreatine, and lower creatine kinase release on reperfusion, whereas glycogen-depleted glucose-perfused hearts were similar to control hearts. In summary, glycogen depletion by these three methods limits the fall in pH during global ischemia, although glycogen depletion in the absence of preconditioning does not limit ischemic injury.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Glycogen/metabolism , Myocardial Ischemia/etiology , Adenosine Triphosphate/metabolism , Animals , Creatine Kinase/metabolism , Disease Models, Animal , Glucose , Glycolysis , Hydrogen-Ion Concentration , In Vitro Techniques , Intracellular Fluid/metabolism , Magnetic Resonance Spectroscopy , Male , Myocardial Ischemia/physiopathology , Myocardial Ischemia/prevention & control , Perfusion , Phosphates/metabolism , Phosphocreatine/metabolism , Rats , Rats, Sprague-Dawley , Ventricular Function, Left
SELECTION OF CITATIONS
SEARCH DETAIL
...