Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 27(22): 27449-27456, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31823270

ABSTRACT

In the present investigation, different salts of nitrogen and carbon sources were tested for their potential to boost biomass and lipid content in Scenedesmus sp. IITRIND2. Among the nitrogen sources, ammonium bicarbonate/nitrate cultures showed maximum dry cell weight (DCW) of ~ 1.8 g/L and lipid yield (~ 40%) while the addition of C6 sugars (glucose and mannose) and sodium acetate enhanced the DCW (~ 3 g/L) and lipid accumulation (~ 40%) compared with disaccharides, C4 and C5 sugars. On evaluating the synergistic effects of the nitrogen and carbon sources, maximum DCW (3.66 g/L) was obtained in ammonium bicarbonate + sodium acetate cultures with a lipid yield of 37.15%. The fatty acid profile of the derived biodiesel was similar to that of plant oils. The results clearly established the robust capability of the novel microalga to efficiently adapt, sustain, and grow in different carbon and nitrogen sources along with high lipid productivity, making it a potential source for biodiesel production.


Subject(s)
Microalgae , Scenedesmus , Biofuels , Biomass , Fatty Acids , Lipids , Nitrogen
2.
Foods ; 8(7)2019 Jun 29.
Article in English | MEDLINE | ID: mdl-31261933

ABSTRACT

The rising demand and cost of fossil fuels (diesel and gasoline), together with the need for sustainable, alternative, and renewable energy sources have increased the interest for biomass-based fuels such as biodiesel. Among renewable sources of biofuels, biodiesel is particularly attractive as it can be used in conventional diesel engines without any modification. Oleaginous yeasts are excellent oil producers that can grow easily on various types of hydrophilic and hydrophobic waste streams that are used as feedstock for single cell oils and subsequently biodiesel production. In this study, cultivation of Rhodosporidium kratochvilovae on a hydrophobic waste (clarified butter sediment waste medium (CBM)) resulted in considerably high lipid accumulation (70.74% w/w). Maximum cell dry weight and total lipid production were 15.52 g/L and 10.98 g/L, respectively, following cultivation in CBM for 144 h. Neutral lipids were found to accumulate in the lipid bodies of cells, as visualized by BODIPY staining and fluorescence microscopy. Cells grown in CBM showed large and dispersed lipid droplets in the intracellular compartment. The fatty acid profile of biodiesel obtained after transesterification was analyzed by gas chromatography-mass spectrometry (GC-MS), while its quality was determined to comply with ASTM 6751 and EN 14214 international standards. Hence, clarified sediment waste can be exploited as a cost-effective renewable feedstock for biodiesel production.

3.
Environ Sci Pollut Res Int ; 26(17): 16952-16973, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31030399

ABSTRACT

Oleaginous microalgae and yeast are the two major propitious factories which are sustainable sources for biodiesel production, as they can accumulate high quantities of lipids inside their bodies. To date, various microalgal and yeast species have been exploited singly for biodiesel production. However, despite the ongoing efforts, their low lipid productivity and the high cost of cultivation are still the major bottlenecks hindering their large-scale deployment. Co-culturing of microalgae and yeast has the potential to increase the overall lipid productivity by minimizing its production cost as both these organisms can utilize each other's by-products. Microalgae act as an O2 generator for yeast while consuming the CO2 and organic acids released by the yeast cells. Further, yeast can break complex sugars in the medium, which can then be utilized by microalgae thereby opening new options for copious and low-cost feedstocks such as agricultural residues. The current review provides a historical and technical overview of the existing studies on co-culturing of yeast and microalgae and elucidates the crucial factors that affect the symbiotic relationship between these two organisms. Furthermore, the review also highlighted the advantages and the future perspectives for paving a path towards a sustainable biodiesel product.


Subject(s)
Biofuels/analysis , Lipid Metabolism , Microalgae/metabolism , Saccharomyces cerevisiae/metabolism , Biomass , Coculture Techniques , Microalgae/growth & development , Saccharomyces cerevisiae/growth & development
4.
Biotechnol Biofuels ; 12: 2, 2019.
Article in English | MEDLINE | ID: mdl-30622644

ABSTRACT

BACKGROUND: Harnessing the halotolerant characteristics of microalgae provides a viable alternative for sustainable biomass and triacylglyceride (TAG) production. Scenedesmus sp. IITRIND2 is a fast growing fresh water microalga that has the capability to thrive in high saline environments. To understand the microalga's adaptability, we studied its physiological and metabolic flexibility by studying differential protein, metabolite and lipid expression profiles using metabolomics, proteomics, real-time polymerase chain reaction, and lipidomics under high salinity conditions. RESULTS: On exposure to salinity, the microalga rewired its cellular reserves and ultrastructure, restricted the ions channels, and modulated its surface potential along with secretion of extrapolysaccharide to maintain homeostasis and resolve the cellular damage. The algal-omics studies suggested a well-organized salinity-driven metabolic adjustment by the microalga starting from increasing the negatively charged lipids, up regulation of proline and sugars accumulation, followed by direction of carbon and energy flux towards TAG synthesis. Furthermore, the omics studies indicated both de-novo and lipid cycling pathways at work for increasing the overall TAG accumulation inside the microalgal cells. CONCLUSION: The salt response observed here is unique and is different from the well-known halotolerant microalga; Dunaliella salina, implying diversity in algal response with species. Based on the integrated algal-omics studies, four potential genetic targets belonging to two different metabolic pathways (salt tolerance and lipid production) were identified, which can be further tested in non-halotolerant algal strains.

5.
Ultrason Sonochem ; 51: 504-516, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30082251

ABSTRACT

Oleaginous yeasts have emerged as a sustainable source of renewable oils for liquid biofuels. However, biodiesel production from them has a few constraints with respect to their cell disruption and lipid extraction techniques. The lipid extraction from oleaginous yeasts commonly includes dewatering and drying of cell biomass, which requires energy and time. The aim of this work was to establish a process for the lipid extraction from wet biomass applying acid catalyzed hot water, as well as microwave, and rapid ultrasonication-microwave treatment together with the conventional Bligh and Dyer method. In the wake of testing all procedures, it was revealed that rapid ultrasonication-microwave treatment has great potential to give high lipid content (70.86% w/w) on the cell dry weight basis. The lipid profile after treatment showed the presence of appropriate quantities of saturated (10.39 ±â€¯0.15%), monounsaturated (76.55 ±â€¯0.19%) and polyunsaturated fatty acids (11.49 ±â€¯0.23%) which further improves biodiesel quality compared to the other methods. To the best of our knowledge, this is the first report of using rapid ultrasonication-microwave treatment for the lipid extraction from wet oleaginous yeast biomass in the literature.


Subject(s)
Biofuels/microbiology , Biomass , Chemical Fractionation/methods , Lipids/isolation & purification , Microwaves , Sonication , Ustilaginales/chemistry , Chloroform/chemistry , Esterification , Fatty Acids/analysis , Green Chemistry Technology , Lipids/chemistry , Methanol/chemistry , Temperature , Time Factors
6.
ACS Omega ; 3(9): 11847-11856, 2018 Sep 30.
Article in English | MEDLINE | ID: mdl-30320279

ABSTRACT

Nuclear magnetic resonance (NMR)-based metabolomic approach is a high-throughput fingerprinting technique that allows a rapid snapshot of metabolites without any prior knowledge of the organism. To demonstrate the applicability of NMR-based metabolomics in the field of microalgal-based bioremediation, novel freshwater microalga Scenedesmus sp. IITRIND2 that showed hypertolerance to As(III, V) was chosen for evaluating the metabolic perturbations during arsenic stress in both its oxidation states As(III) and As(V). Using NMR spectroscopy, we were able to identify and quantify an array of ∼45 metabolites, including amino acids, sugars, organic acids, phosphagens, osmolytes, nucleotides, etc. The NMR metabolomic experiments were complemented with various biophysical techniques to establish that the microalga tolerated the arsenic stress using a complex interplay of metabolites. The two different arsenic states distinctly influenced the microalgal cellular mechanisms due to their altered physicochemical properties. Eighteen differentially identified metabolites related to bioremediation of arsenic were then correlated to the major metabolic pathways to delineate the variable stress responses of microalga in the presence of As(III, V).

7.
Environ Sci Pollut Res Int ; 25(33): 33443-33454, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30264348

ABSTRACT

Biodiesel production from vegetable oils is not sustainable and economical due to the food crisis worldwide. The development of a cost-effective non-edible feedstock is essential. In this study, we proposed to use aquatic oomycetes for microbial oils, which are cellulolytic fungus-like filamentous eukaryotic microorganisms, commonly known as water molds. They differ from true fungi as cellulose is present in their cell wall and chitin is absent. They show parasitic as well as saprophytic nature and have great potential to utilize decaying animal and plant debris in freshwater habitats. To study the triacylglycerol (TAG) accumulation in the aquatic oomycetes, the isolated water mold Achlya diffusa was cultivated under semi-solid-state conditions on waste sugarcane bagasse, which was compared with the cultivation in Czapek (DOX) medium. A. diffusa grown on waste sugarcane bagasse showed large lipid droplets in its cellular compartment and synthesized 124.03 ± 1.93 mg/gds cell dry weight with 50.26 ± 1.76% w/w lipid content. The cell dry weight and lipid content of this water mold decreased to 89.54 ± 1.21 mg/gds and 38.82% w/w, respectively, when cultivated on standard medium Czapek-Dox agar (CDA). For the fatty acid profile of A. diffusa grown in sugarcane bagasse and CDA, in situ transesterification (IST) and indirect transesterification (IDT) approaches were evaluated. The lipid profile of this mold revealed the presence of C12:0, C14:0, C16:0, C18:0, C18:1, C18:2, C20:0, and C21:0 fatty acids, which is similar to vegetable oils. The biodiesel properties of the lipids obtained from A. diffusa satisfied the limits as determined by international standards ASTM-D6751 and EN-14214 demonstrating its suitability as a fuel for diesel engines.


Subject(s)
Biofuels/microbiology , Cellulose/chemistry , Lipids/analysis , Oomycetes/chemistry , Oomycetes/growth & development , Saccharum/chemistry , Animals , Biomass , Esterification , Fatty Acids/analysis , Triglycerides/analysis
8.
Environ Sci Pollut Res Int ; 25(1): 353-362, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29039037

ABSTRACT

The potential of lipid accumulation by oleaginous yeast Cryptococcus vishniaccii grown on amaranth seed aqueous extract (AAE) media was assessed. Maximum cell biomass productivity of 104 mg/L/h, lipid productivity of 54 mg/L/h, and lipid content of 52.31% were recorded on AAE when carbon to nitrogen (C:N) ratio increased from 134 to 147 after removal of ammonia nitrogen. The lipid droplet (LD) size (2.32 ± 0.38 µm) was visualized by fluorescence microscopy using Nile red stain indicating maximum accumulated triacylglycerol (TAG) at C:N 147. Fatty acid methyl ester (FAME) profile obtained after transesterification of extracted lipid revealed the presence of palmitic acid (16:0), palmitoleic acid (16:1), stearic acid (18:0), oleic acid (18:1), and linoleic acid (18:2). Data showed the presence of high monounsaturated fatty acid (MUFA) content (68.17%) depicting improved winter operating conditions of biodiesel. Various quality parameters of biodiesel were evaluated and compared to the American and European biodiesel standards specifications. Based on the lipid productivity, distribution of fatty acids, and evaluated properties obtained; the lipid accumulation by C. vishniaccii utilizing amaranth seeds as substrate could serve as a feasible feedstock for biodiesel production.


Subject(s)
Amaranthus/microbiology , Biofuels/analysis , Biotechnology/methods , Cryptococcus/metabolism , Seeds/microbiology , Amaranthus/chemistry , Biomass , Cryptococcus/growth & development , Fatty Acids/analysis , Lipid Droplets/metabolism , Plant Extracts/chemistry , Seeds/chemistry
9.
Biomed Pharmacother ; 94: 1186-1196, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28830069

ABSTRACT

A potent biosurfactant (BS) producing Bacillus licheniformis SV1 (NCBI GenBank Accession No. KX130852) was isolated from oil contaminated soil sample. Physicochemical investigations (TLC, HPLC, FTIR, GC-MS and NMR) revealed it to be glycolipid in nature. Fibroblast culture assay showed cytocompatibility and increased cell proliferation of 3T3/NIH fibroblast cells treated with this biosurfactant when checked using MTT assay and DAPI fluorescent staining. To evaluate the wound healing potential, BS ointment was formulated and checked for its spreadability and viscosity consistency. In vivo wound healing examination of full thickness skin excision wound rat model demonstrated the prompt re-epithelialization and fibroblast cell proliferation in the early phase while quicker collagen deposition in later phases of wound healing when BS ointment was used. These results validated the potential usage of BS ointment as a transdermal substitute for faster healing of impaired skin wound. Biochemical evaluation also substantiated the highest concentration of hydroxyproline (32.18±0.46, p<0.001) in the BS ointment treated animal tissue samples compared to the control. Hematoxylin-Eosin (H&E) and Masson's Trichrome staining validated the presence of increased amount of collagen fibers and blood vessels in the test animals treated with BS ointment.


Subject(s)
Glycolipids/administration & dosage , Ointments/administration & dosage , Skin/drug effects , Wound Healing/drug effects , Administration, Cutaneous , Animals , Blood Vessels/drug effects , Blood Vessels/metabolism , Cell Line , Cell Proliferation/drug effects , Collagen/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Hydroxyproline/metabolism , Mice , NIH 3T3 Cells , Rats , Rats, Wistar , Skin/metabolism
10.
J Hazard Mater ; 340: 47-56, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28711832

ABSTRACT

Phenol is reported to be one of the most toxic environmental pollutants present in the discharge of various industrial effluents causing a serious threat to the existing biome. Biodegradation of phenol by oleaginous yeast Rhodosporidium kratochvilovae HIMPA1 was found to degrade 1000mg/l phenol. The pathways for phenol degradation by both ortho and meta-cleavage were proposed by the identification of metabolites and enzymatic assays of ring cleavage enzymes in the cell extracts. Results suggest that this oleaginous yeast degrade phenol via meta-cleavage pathway and accumulates a high quantity of lipid content (64.92%; wt/wt) as compared to control glucose synthetic medium (GSM). Meta-cleavage pathway of phenol degradation leads to formation of pyruvate and acetaldehyde. Both these end products feed as precursors for de novo triacylglycerols (TAG) biosynthesis pathway which causes accumulation of TAG in the lipid droplets (LD) of 6.12±0.78µm grown on phenol while 2.38±0.52µm observed on GSM. This was confirmed by fluorescence microscopic images of BODIPY505-515nm stained live yeast cells. GC-MS analysis of extracted total lipid showed enhanced amount of monounsaturated fatty acid (MUFA) which was as 51.87%, 58.33% and 62.98% in presence of 0.5, 0.75 and 1g/l of phenol.


Subject(s)
Basidiomycota/metabolism , Phenol/metabolism , Triglycerides/biosynthesis , Biodegradation, Environmental , Catechol 2,3-Dioxygenase/metabolism , Lipid Metabolism
11.
Bioresour Technol ; 242: 121-127, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28366694

ABSTRACT

The aim of this work was to generate high lipid accumulating mutants of Chlorella minutissima (CM) using ethyl methyl sulphonate (EMS) as a random chemical mutagen. Amid the 5% surviving cells after exposure to EMS (2M), three fast growing mutants (CM2, CM5, CM7) were selected and compared with wild type for lipid productivity and biochemical composition. Among these mutants, CM7 showed the maximum biomass (2.4g/L) and lipid content (42%) as compared to wild type (1.5g/L; 27%). Further, the mutant showed high photosynthetic pigments with low starch content signifying the re-allocation of carbon flux to lipid. The obtained mutant showed no visible morphological changes in comparison to its WT. The fatty acid profile showed increase in monounsaturated fatty acids while decreased saturated and polyunsaturated fatty acids signifying good quality biodiesel. The mutant strain thus obtained can be optimized further and applied for enhanced biodiesel production.


Subject(s)
Biofuels , Lipids , Biomass , Chlorella , Fatty Acids , Microalgae
12.
PLoS One ; 12(3): e0164823, 2017.
Article in English | MEDLINE | ID: mdl-28273082

ABSTRACT

Ancient DNA (aDNA) analysis of extinct ratite species is of considerable interest as it provides important insights into their origin, evolution, paleogeographical distribution and vicariant speciation in congruence with continental drift theory. In this study, DNA hotspots were detected in fossilized eggshell fragments of ratites (dated ≥25000 years B.P. by radiocarbon dating) using confocal laser scanning microscopy (CLSM). DNA was isolated from five eggshell fragments and a 43 base pair (bp) sequence of a 16S rRNA mitochondrial-conserved region was successfully amplified and sequenced from one of the samples. Phylogenetic analysis of the DNA sequence revealed a 92% identity of the fossil eggshells to Struthio camelus and their position basal to other palaeognaths, consistent with the vicariant speciation model. Our study provides the first molecular evidence for the presence of ostriches in India, complementing the continental drift theory of biogeographical movement of ostriches in India, and opening up a new window into the evolutionary history of ratites.


Subject(s)
DNA, Ancient/analysis , Struthioniformes/genetics , Animals , Egg Shell/metabolism , Egg Shell/pathology , Fossils , India , Microscopy, Confocal , Mitochondria/genetics , Phylogeny , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Sequence Analysis, DNA , Struthioniformes/classification
13.
Environ Sci Pollut Res Int ; 23(20): 20997-21007, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27488714

ABSTRACT

The study illustrates the synergistic potential of novel microalgal, Chlamydomonas debaryana IITRIND3, for phycoremediation of domestic, sewage, paper mill and dairy wastewaters and then subsequent utilisation of its biomass for biodiesel production. Among these wastewaters, maximum lipid productivity (87.5 ± 2.3 mg L-1 day-1) was obtained in dairy wastewater with removal efficiency of total nitrogen, total phosphorous, chemical oxygen demand and total organic carbon to be 87.56, 82.17, 78.57 and 85.97 %, respectively. Metal ions such as sodium, calcium, potassium and magnesium were also removed efficiently from the wastewaters tested. Pigment analysis revealed loss of chlorophyll a while increase in carotenoid content in algal cells cultivated in different wastewaters. Biochemical data of microalgae grown in different wastewaters showed reduction in protein content with an increase in carbohydrate and lipid contents. The major fatty acids in algal cells grown in dairy wastewater were C14:0, C16:0, C16:1, C18:0, C18:2 and C18:3. The physical properties of biodiesel derived from microalgae grown in dairy wastewater were in compliance with the ASTM D6751 and EN 14214 fuel standards and were comparable to plant oil methyl esters.


Subject(s)
Biofuels , Chlamydomonas/metabolism , Microalgae/metabolism , Biodegradation, Environmental , Biological Oxygen Demand Analysis , Biomass , Chlorophyll/metabolism , Chlorophyll A , Dairying , Industrial Waste , Lipid Metabolism , Metals/metabolism , Nitrogen/metabolism , Phosphorus/metabolism , Wastewater , Water Pollutants, Chemical/metabolism
14.
Appl Biochem Biotechnol ; 180(8): 1534-1541, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27465038

ABSTRACT

The investigation for the first time assesses the efficacy of recycled de-oiled algal biomass extract (DABE) as a cultivation media to boost lipid productivity in Chlorella minutissima and its comparison with Bold's basal media (BBM) used as control. Presence of organic carbon (3.8 ± 0.8 g/l) in recycled DABE resulted in rapid growth with twofold increase in biomass productivity as compared to BBM. These cells expressed four folds higher lipid productivity (126 ± 5.54 mg/l/d) as compared to BBM. Cells cultivated in recycled DABE showed large sized lipid droplets accumulating 54.12 % of lipid content. Decrement in carbohydrate (17.76 %) and protein content (28.12 %) with loss of photosynthetic pigments compared to BBM grown cells were also recorded. The fatty acid profiles of cells cultivated in recycled DABE revealed the dominance of C16:0 (39.66 %), C18:1 (29.41 %) and C18:0 (15.82 %), respectively. This model is self-sustained and aims at neutralizing excessive feedstock consumption by exploiting recycled de-oiled algal biomass for cultivation of microalgae, making the process cost effective.


Subject(s)
Biofuels/microbiology , Biomass , Chlorella/metabolism , Oils/isolation & purification , Recycling , Cell Size/drug effects , Chlorella/drug effects , Chlorella/growth & development , Culture Media/pharmacology , Esters/metabolism , Pigments, Biological/metabolism
15.
Biofouling ; 32(8): 897-909, 2016 09.
Article in English | MEDLINE | ID: mdl-27472386

ABSTRACT

Candida albicans possesses an ability to grow under different host-driven stress conditions by developing robust protective mechanisms. In this investigation the focus was on the impact of osmotic (2M NaCl) and oxidative (5 mM H2O2) stress conditions during C. albicans biofilm formation. Oxidative stress enhanced extracellular DNA secretion into the biofilm matrix, increased the chitin level, and reduced virulence factors, namely phospholipase and proteinase activity, while osmotic stress mainly increased extracellular proteinase and decreased phospholipase activity. Fourier transform infrared and nuclear magnetic resonance spectroscopy analysis of mannan isolated from the C. albicans biofilm cell wall revealed a decrease in mannan content and reduced ß-linked mannose moieties under stress conditions. The results demonstrate that C. albicans adapts to oxidative and osmotic stress conditions by inducing biofilm formation with a rich exopolymeric matrix, modulating virulence factors as well as the cell wall composition for its survival in different host niches.


Subject(s)
Biofilms/drug effects , Candida albicans/drug effects , Hydrogen Peroxide/pharmacology , Oxidative Stress/drug effects , Sodium Chloride/pharmacology , Candida albicans/metabolism , Candida albicans/pathogenicity , Candida albicans/physiology , Microbial Viability , Osmotic Pressure , Oxidation-Reduction , Virulence/drug effects , Virulence Factors/metabolism
16.
Appl Biochem Biotechnol ; 180(1): 109-21, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27093970

ABSTRACT

This investigation utilized sugarcane bagasse aqueous extract (SBAE), a nontoxic, cost-effective medium to boost triacylglycerol (TAG) accumulation in novel fresh water microalgal isolate Scenedesmus sp. IITRIND2. Maximum lipid productivity of 112 ± 5.2 mg/L/day was recorded in microalgae grown in SBAE compared to modified BBM (26 ± 3 %). Carotenoid to chlorophyll ratio was 12.5 ± 2 % higher than in photoautotrophic control, indicating an increase in photosystem II activity, thereby increasing growth rate. Fatty acid methyl ester (FAME) profile revealed presence of C14:0 (2.29 %), C16:0 (15.99 %), C16:2 (4.05 %), C18:0 (3.41 %), C18:1 (41.55 %), C18:2 (12.41), and C20:0 (1.21 %) as the major fatty acids. Cetane number (64.03), cold filter plugging property (-1.05 °C), and oxidative stability (12.03 h) indicated quality biodiesel abiding by ASTM D6751 and EN 14214 fuel standards. Results consolidate the candidature of novel freshwater microalgal isolate Scenedesmus sp. IITRIND2 cultivated in SBAE, aqueous extract made from copious, agricultural waste sugarcane bagasse to increase the lipid productivity, and could further be utilized for cost-effective biodiesel production.


Subject(s)
Biofuels/microbiology , Biotechnology/methods , Cellulose/chemistry , Microalgae/metabolism , Saccharum/chemistry , Scenedesmus/metabolism , Triglycerides/metabolism , Waste Products , Autotrophic Processes/drug effects , Biomass , Carbon/pharmacology , Cell Size/drug effects , Esters/metabolism , Lipids/biosynthesis , Microalgae/cytology , Microalgae/drug effects , Microalgae/ultrastructure , Plant Extracts/pharmacology , Reference Standards , Scenedesmus/cytology , Scenedesmus/drug effects , Scenedesmus/ultrastructure
17.
Nanomedicine ; 12(5): 1375-85, 2016 07.
Article in English | MEDLINE | ID: mdl-26964481

ABSTRACT

In order to promote the natural healing process, drug-functionalized nanofibrous transdermal substitute was fabricated using gellan as chief polymer and polyvinyl alcohol (PVA) as supporting polymer via electrospinning technique. These fabricated nanofibers physiochemically mimic the extracellular matrix (ECM) which supports the cell growth. For neo-tissue regeneration in a sterilized environment, amoxicillin (Amx) was entrapped within these nanofibers. Entrapment of Amx in the nanofibers was confirmed by FESEM, FTIR, XRD and TG analysis. In vitro cell culture studies revealed that the fabricated non-cytotoxic nanofibers promoted enhance cell adherence and proliferation of human keratinocytes. A preliminary in vivo study performed on rat model for full thickness skin excision wound demonstrated the prompt re-epithelialization in early phase and quicker collagen deposition in later phases of wound healing in case of Amx-functionalized gellan/PVA nanofibers. Data collectively confirmed the potential usage of gellan based electrospun nanofibers as transdermal substitute for faster skin restoration.


Subject(s)
Nanofibers , Polyvinyl Alcohol , Wound Healing , Administration, Cutaneous , Animals , Collagen , Humans , Rats , Regeneration , Skin Physiological Phenomena , Tissue Scaffolds
18.
Bioresour Technol ; 213: 79-87, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26970694

ABSTRACT

The study synergistically optimized nitrogen and phosphorous concentrations for attainment of maximum lipid productivity in Chlorella minutissima. Nitrogen and phosphorous limited cells (N(L)P(L)) showed maximum lipid productivity (49.1±0.41mg/L/d), 1.47 folds higher than control. Nitrogen depletion resulted in reduced cell size with large sized lipid droplets encompassing most of the intracellular space while discrete lipid bodies were observed under nitrogen sufficiency. Synergistic N/P starvations showed more prominent effect on photosynthetic pigments as to individual deprivations. Phosphorous deficiency along with N starvation exhibited 17.12% decline in carbohydrate while no change in nitrogen sufficient cells were recorded. The optimum N(L)P(L) concentration showed balance between biomass and lipid by maintaining intermediate cell size, pigments, carbohydrate and proteins. FAME profile showed C14-C18 carbon chains in N(L)P(L) cells with biodiesel properties comparable to plant oil methyl esters. Hence, synergistic N/P limitation was effective for enhancing lipid productivity with reduced consumption of nutrients.


Subject(s)
Biofuels , Biotechnology/methods , Chlorella/metabolism , Lipids/biosynthesis , Nitrogen/pharmacology , Phosphorus/pharmacology , Biomass , Carbohydrates/analysis , Chlorella/drug effects , Chlorella/growth & development , Esters/metabolism , Pigments, Biological/analysis , Proteins/analysis
19.
Mycopathologia ; 181(5-6): 341-52, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26899861

ABSTRACT

In the present investigation, the role of carbon sources (glucose, lactate, sucrose, and arabinose) on Candida albicans biofilm development and virulence factors was studied on polystyrene microtiter plates. Besides this, structural changes in cell wall component ß-glucan in presence of different carbon sources have also been highlighted. Biofilm formation was analyzed by XTT (2,3-bis[2-Methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide) reduction assay. Glucose-grown cells exhibited the highest metabolic activity during adhesion among all carbon sources tested (p < 0.05). However, cells exposed to sucrose exhibited highest biofilm formation and matrix polysaccharides secretion after 48 h. The results also correlated with the biofilm height and roughness measurements by atomic force microscopy. Exposure to lactate induced hyphal structures with the highest proteinase activity while arabinose-grown cells formed pseudohyphal structures possessing the highest phospholipase activity. Structural changes in ß-glucan characterized by Fourier transform infrared (FTIR) spectroscopy displayed characteristic band of ß-glucan at 892 cm(-1) in all carbon sources tested. The ß(1→6) to ß(1→3) glucan ratio calculated as per the band area of the peak was less in lactate (1.15) as compared to glucose (1.73), sucrose (1.62), and arabinose (2.85). These results signify that carbon sources influence C. albicans biofilm development and modulate virulence factors and structural organization of cell wall component ß-glucan.


Subject(s)
Biofilms/growth & development , Candida albicans/physiology , Carbon/metabolism , Candida albicans/growth & development , Candida albicans/metabolism , Carbohydrate Metabolism , Cell Wall/chemistry , Formazans/analysis , Lactates/metabolism , Microscopy, Atomic Force , Spectroscopy, Fourier Transform Infrared , Staining and Labeling , beta-Glucans/analysis
20.
Carbohydr Polym ; 136: 851-9, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26572421

ABSTRACT

In this investigation, we have introduced novel electrospun gellan based nanofibers as a hydrophilic scaffolding material for skin tissue regeneration. These nanofibers were fabricated using a blend mixture of gellan with polyvinyl alcohol (PVA). PVA reduced the repulsive force of resulting solution and lead to formation of uniform fibers with improved nanostructure. Field emission scanning electron microscopy (FESEM) confirmed the average diameter of nanofibers down to 50 nm. The infrared spectra (IR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis evaluated the crosslinking, thermal stability and highly crystalline nature of gellan-PVA nanofibers, respectively. Furthermore, the cell culture studies using human dermal fibroblast (3T3L1) cells established that these gellan based nanofibrous scaffold could induce improved cell adhesion and enhanced cell growth than conventionally proposed gellan based hydrogels and dry films. Importantly, the nanofibrous scaffold are biodegradable and could be potentially used as a temporary substrate/or biomedical graft to induce skin tissue regeneration.


Subject(s)
Nanofibers/chemistry , Polysaccharides, Bacterial/chemistry , Polyvinyl Alcohol/chemistry , Skin Physiological Phenomena , Tissue Scaffolds/chemistry , Cell Adhesion , Cell Line , Cell Proliferation , Fibroblasts/drug effects , Fibroblasts/physiology , Humans , Regeneration
SELECTION OF CITATIONS
SEARCH DETAIL
...