Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Parasitol Res ; 122(6): 1303-1316, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37012507

ABSTRACT

A morphophysiological study of tubular reabsorption and mechanisms of protein endocytosis in the kidney of frogs (Rana temporaria L.) during parasitic infection was carried out. Pseudoplasmodia and spores of myxosporidia, beforehand assigned to the genus Sphaerospora, were detected in Bowman's capsules and in the lumen of individual renal tubules by light and electron microscopy. Remarkable morphological alteration and any signs of pathology in kidney tissue related to this myxosporean infection have not been noted. At the same time, significant changes in protein reabsorption and distribution of molecular markers of endocytosis in the proximal tubule (PT) cells in infected animals were detected by immunofluorescence confocal microscopy. In lysozyme injection experiments, the endocytosed protein and megalin expression in the infected PTs were not revealed. Tubular expression of cubilin and clathrin decreased, but endosomal recycling marker Rab11 increased or remained unchanged. Thus, myxosporean infection resulted in the alterations in lysozyme uptake and expression of the main molecular determinants of endocytosis. The inhibition of receptor-mediated clathrin-dependent protein endocytosis in amphibian kidneys due to myxosporidiosis was shown for the first time. Established impairment of the endocytic process is a clear marker of tubular cell dysfunction that can be used to assess the functioning of amphibian kidneys during adaptation to adverse environmental factors.


Subject(s)
Kidney , Muramidase , Animals , Muramidase/metabolism , Rana temporaria , Kidney Tubules, Proximal/metabolism , Endocytosis/physiology , Clathrin/metabolism
2.
Acta Histochem ; 123(6): 151760, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34303296

ABSTRACT

Participation of molecular determinants of endocytosis in the processes of glomerular filtration and tubular reabsorption of albumin and lysozyme in the mesonephros of grass frogs (Rana temporaria L.), lake frogs (Rana ridibunda P.), and newts (Triturus vulgaris L.) is investigated. In all studied species, the constitutive expression of endocytic receptors in proximal tubule (PT) cells is established using immunofluorescence microscopy and immunoblotting. The certain stages of lysozyme and albumin endocytosis involving megalin/LRP2, cubilin, clathrin and protein Rab11 are detailed, and the central role of ligand-induced megalin/LRP2 activity in this process is shown. Increased ligand-induced expression for clathrin and Rab11was also found. In grass frogs, the different patterns of endocytic receptors and both absorbed proteins in the initial parts of proximal tubules suggest the proximo-distal specialization of absorptive processes along these tubule segments, similar to this in more complex mammalian nephrons. This data, as well as the revealed peculiarities of ligand-receptor interactions during intracellular trafficking of proteins prove that megalin is mainly involved in the absorption of lysozyme. At the same time, albumin absorption is mediated by both receptors, or cubilin contributes the most. The detection of endocytic receptor in glomerular structural elements in frogs and newts suggests the participation of filtration barrier components in endocytosis of filterable proteins. The results represent a new contribution to the study of the fundamental mechanisms of renal protein uptake in the amphibian mesonephros as a more primitive kidney compared to mammalian metanephros.


Subject(s)
Amphibian Proteins/metabolism , Endocytosis , Kidney Tubules, Proximal/metabolism , Mesonephros/metabolism , Animals , Protein Transport , Rana ridibunda , Rana temporaria , Triturus
SELECTION OF CITATIONS
SEARCH DETAIL
...