Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Differ ; 22(10): 1618-29, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25698444

ABSTRACT

The CB1 cannabinoid receptor, the main molecular target of endocannabinoids and cannabis active components, is the most abundant G protein-coupled receptor in the mammalian brain. In particular, the CB1 receptor is highly expressed in the basal ganglia, mostly on terminals of medium-sized spiny neurons, where it plays a key neuromodulatory function. The CB1 receptor also confers neuroprotection in various experimental models of striatal damage. However, the assessment of the physiological relevance and therapeutic potential of the CB1 receptor in basal ganglia-related diseases is hampered, at least in part, by the lack of knowledge of the precise mechanism of CB1 receptor neuroprotective activity. Here, by using an array of pharmacological, genetic and pharmacogenetic (designer receptor exclusively activated by designer drug) approaches, we show that (1) CB1 receptor engagement protects striatal cells from excitotoxic death via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin complex 1 pathway, which, in turn, (2) induces brain-derived neurotrophic factor (BDNF) expression through the selective activation of BDNF gene promoter IV, an effect that is mediated by multiple transcription factors. To assess the possible functional impact of the CB1/BDNF axis in a neurodegenerative-disease context in vivo, we conducted experiments in the R6/2 mouse, a well-established model of Huntington's disease, in which the CB1 receptor and BDNF are known to be severely downregulated in the dorsolateral striatum. Adeno-associated viral vector-enforced re-expression of the CB1 receptor in the dorsolateral striatum of R6/2 mice allowed the re-expression of BDNF and the concerted rescue of the neuropathological deficits in these animals. Collectively, these findings unravel a molecular link between CB1 receptor activation and BDNF expression, and support the relevance of the CB1/BDNF axis in promoting striatal neuron survival.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , Corpus Striatum/physiology , Neuroprotection , Receptor, Cannabinoid, CB1/physiology , Signal Transduction , Animals , Corpus Striatum/metabolism , Disease Models, Animal , Huntington Disease/metabolism , Mechanistic Target of Rapamycin Complex 1 , Mice , Multiprotein Complexes/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Promoter Regions, Genetic , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Transgenes
2.
Handb Exp Pharmacol ; 220: 67-100, 2014.
Article in English | MEDLINE | ID: mdl-24668470

ABSTRACT

Neurotrophins are powerful molecules. Small quantities of these secreted proteins exert robust effects on neuronal survival, synapse stabilization, and synaptic function. Key functions of the neurotrophins rely on these proteins being expressed at the right time and in the right place. This is especially true for BDNF, stimulus-inducible expression of which serves as an essential step in the transduction of a broad variety of extracellular stimuli into neuronal plasticity of physiologically relevant brain regions. Here we review the transcriptional and translational mechanisms that control neurotrophin expression with a particular focus on the activity-dependent regulation of BDNF.


Subject(s)
Nerve Growth Factors/genetics , Animals , Brain-Derived Neurotrophic Factor/genetics , DNA Methylation , Gene Expression Regulation , Humans , Promoter Regions, Genetic , Protein Processing, Post-Translational , RNA Stability
3.
Mol Psychiatry ; 12(12): 1129-39, 1057, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17667961

ABSTRACT

Left-right asymmetrical brain function underlies much of human cognition, behavior and emotion. Abnormalities of cerebral asymmetry are associated with schizophrenia and other neuropsychiatric disorders. The molecular, developmental and evolutionary origins of human brain asymmetry are unknown. We found significant association of a haplotype upstream of the gene LRRTM1 (Leucine-rich repeat transmembrane neuronal 1) with a quantitative measure of human handedness in a set of dyslexic siblings, when the haplotype was inherited paternally (P=0.00002). While we were unable to find this effect in an epidemiological set of twin-based sibships, we did find that the same haplotype is overtransmitted paternally to individuals with schizophrenia/schizoaffective disorder in a study of 1002 affected families (P=0.0014). We then found direct confirmatory evidence that LRRTM1 is an imprinted gene in humans that shows a variable pattern of maternal downregulation. We also showed that LRRTM1 is expressed during the development of specific forebrain structures, and thus could influence neuronal differentiation and connectivity. This is the first potential genetic influence on human handedness to be identified, and the first putative genetic effect on variability in human brain asymmetry. LRRTM1 is a candidate gene for involvement in several common neurodevelopmental disorders, and may have played a role in human cognitive and behavioral evolution.


Subject(s)
Chromosomes, Human, Pair 2 , Functional Laterality/genetics , Genetic Predisposition to Disease , Membrane Proteins/genetics , Schizophrenia/genetics , Animals , Brain/metabolism , Brain/pathology , Cell Line, Transformed , Family Health , Female , Gene Expression Regulation, Developmental/physiology , Genotype , Humans , In Situ Hybridization/methods , Karyotyping , Male , Membrane Proteins/metabolism , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Schizophrenia/pathology , Subcellular Fractions/metabolism , Subcellular Fractions/pathology , Subcellular Fractions/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...