Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Am J Physiol Heart Circ Physiol ; 324(2): H198-H209, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36525480

ABSTRACT

During ischemic heart failure (IHF), cardiac muscle contraction is typically impaired, though the molecular changes within the myocardium are not fully understood. Thus, we aimed to characterize the biophysical properties of cardiac myosin in IHF. Cardiac tissue was harvested from 10 age-matched males, either with a history of IHF or nonfailing (NF) controls that had no history of structural or functional cardiac abnormalities. Clinical measures before cardiac biopsy demonstrated significant differences in measures of ejection fraction and left ventricular dimensions. Myofibrils and myosin were extracted from left ventricular free wall cardiac samples. There were no changes in myofibrillar ATPase activity or calcium sensitivity between groups. Using isolated myosin, we found a 15% reduction in the IHF group in actin sliding velocity in the in vitro motility assay, which was observed in the absence of a myosin isoform shift. Oxidative damage (carbonylation) of isolated myosin was compared, in which there were no significant differences between groups. Synthetic thick filaments were formed from purified myosin and the ATPase activity was similar in both basal and actin-activated conditions (20 µM actin). Correlation analysis and Deming linear regression were performed between all studied parameters, in which we found statistically significant correlations between clinical measures of contractility with molecular measures of sliding velocity and ELC carbonylation. Our data indicate that subtle deficits in myosin mechanochemical properties are associated with reduced contractile function and pathological remodeling of the heart, suggesting that the myosin motor may be an effective pharmacological intervention in ischemia.NEW & NOTEWORTHY Ischemic heart failure is associated with impairments in contractile performance of the heart. This study revealed that cardiac myosin isolated from patients with ischemic heart failure had reduced mechanical activity, which correlated with the impaired clinical phenotype of the patients. The results suggest that restoring myosin function with pharmacological intervention may be a viable method for therapeutic intervention.


Subject(s)
Heart Failure , Ventricular Dysfunction, Left , Male , Humans , Actins , Cardiac Myosins , Myocardium , Myosins , Myofibrils , Myocardial Contraction
2.
Am J Pathol ; 146(6): 1455-66, 1995 Jun.
Article in English | MEDLINE | ID: mdl-7778684

ABSTRACT

The mechanical disturbance after unilateral ureteral obstruction (UUO) is a nonimmune stimulus that is capable of eliciting a florid macrophage infiltration of the kidney and subsequent post-inflammatory renal scarring. Osteopontin has potential chemoattractant activity and, for this reason, we delineated the kinetics of its expression in the renal cortex of rats with UUO. Whole body X-irradiation and reversal of UUO were utilized as interventional maneuvers to give additional pathobiological insight into this protein's role in the response of the kidneys to ureteral obstruction. Increased osteopontin mRNA levels in obstructed kidneys versus contralateral unobstructed specimens were evident as early as 4 hours after UUO and steadily increased at 12, 24, 48, and 96 hours after UUO. Both X-irradiation and reversal of UUO failed to significantly modulate renal cortical osteopontin mRNA expression at all of the above time points. Paralleling the increments in renal cortical osteopontin mRNA levels were significant elevations in the cortical renal interstitial macrophage number, which was significantly diminished by previous X-irradiation but not reversal of UUO. Focal labeling of osteopontin was noted in both tubular and Bowman's capsular epithelium in obstructed kidneys as early as 4 hours after UUO, whereas, in the contralateral unobstructed specimens, there was only faint staining in Bowman's capsule. By 96 hours after UUO, obstructed kidneys exhibited intense, diffuse staining for osteopontin in both tubules and Bowman's capsule. Osteopontin's immunolocalization was not modulated by X-irradiation or reversal of UUO. These data support the contention that osteopontin is involved in the accumulation of macrophages within the peritubular and periglomerular interstitium in the obstructed renal cortex.


Subject(s)
Hydronephrosis/metabolism , Kidney Cortex/metabolism , Sialoglycoproteins/genetics , Animals , Blotting, Northern , Disease Models, Animal , Hydronephrosis/veterinary , Male , Osteopontin , Proliferating Cell Nuclear Antigen/biosynthesis , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Sialoglycoproteins/physiology , Up-Regulation/physiology , Ureteral Obstruction/pathology , Vimentin/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...