Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 69(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38697212

ABSTRACT

Objective.Recently, a new and promising approach for range verification was proposed. This method requires the use of two different ion species. Due to their equal magnetic rigidity, fully ionized carbon and helium ions can be simultaneously accelerated in accelerators like synchrotrons. At sufficiently high treatment energies, helium ions can exit the patient distally, reaching approximately three times the range of carbon ions at an equal energy per nucleon. Therefore, the proposal involves adding a small helium fluence to the carbon ion beam and utilizing helium as an online range probe during radiation therapy. This work aims to develop a software framework for treatment planning and motion verification in range-guided radiation therapy using mixed carbon-helium beams.Approach.The developed framework is based on the open-source treatment planning toolkit matRad. Dose distributions and helium radiographs were simulated using the open-source Monte Carlo package TOPAS. Beam delivery system parameters were obtained from the Heidelberg Ion Therapy Center, and imaging detectors along with reconstruction were facilitated by ProtonVDA. Methods for reconstructing the most likely patient positioning error scenarios and the motion phase of 4DCT are presented for prostate and lung cancer sites.Main results.The developed framework provides the capability to calculate and optimize treatment plans for mixed carbon-helium ion therapy. It can simulate the treatment process and generate helium radiographs for simulated patient geometry, including small beam views. Furthermore, motion reconstruction based on these radiographs seems possible with preliminary validation.Significance.The developed framework can be applied for further experimental work with the promising mixed carbon-helium ion implementation of range-guided radiotherapy. It offers opportunities for adaptation in particle therapy, improving dose accumulation, and enabling patient anatomy reconstruction during radiotherapy.


Subject(s)
Carbon , Helium , Radiotherapy Planning, Computer-Assisted , Helium/therapeutic use , Radiotherapy Planning, Computer-Assisted/methods , Humans , Carbon/therapeutic use , Prostatic Neoplasms/radiotherapy , Male , Lung Neoplasms/radiotherapy , Lung Neoplasms/diagnostic imaging , Radiotherapy Dosage , Monte Carlo Method , Heavy Ion Radiotherapy/methods
2.
J Appl Clin Med Phys ; 24(9): e14114, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37573575

ABSTRACT

BACKGROUND: Whereas filtered back projection algorithms for voxel-based CT image reconstruction have noise properties defined by the filter, iterative algorithms must stop at some point in their convergence and do not necessarily produce consistent noise properties for images with different degrees of heterogeneity. PURPOSE: A least-squares iterative algorithm for proton CT (pCT) image reconstruction converges toward a unique solution for relative stopping power (RSP) that optimally fits the protons. We present a stopping criterion that delivers solutions with the property that correlations of RSP noise between voxels are relatively low. This provides a method to produce pCT images with consistent noise properties useful for proton therapy treatment planning, which relies on summing RSP along lines of voxels. Consistent noise properties will also be useful for future studies of image quality using metrics such as contrast to noise ratio, and to compare RSP noise and dose of pCT with other modalities such as dual-energy CT. METHODS: With simulated and real images with varying heterogeneity from a prototype clinical proton imaging system, we calculate average RSP correlations between voxel pairs in uniform regions-of-interest versus distance between voxels. We define a parameter r, the remaining distance to the unique solution relative to estimated RSP noise, and our stopping criterion is based on r falling below a chosen value. RESULTS: We find large correlations between voxels for larger values of r, and anticorrelations for smaller values. For r in the range of 0.5-1, voxels are relatively uncorrelated, and compared to smaller values of r have lower noise with only slight loss of spatial resolution. CONCLUSIONS: Iterative algorithms not using a specific metric or rationale for stopping iterations may produce images with an unknown and arbitrary level of convergence or smoothing. We resolve this issue by stopping iterations of a least-squares iterative algorithm when r reaches the range of 0.5-1. This defines a pCT image reconstruction method with consistent statistical properties optimal for clinical use, including for treatment planning with pCT images.


Subject(s)
Proton Therapy , Protons , Humans , Phantoms, Imaging , Tomography, X-Ray Computed/methods , Proton Therapy/methods , Algorithms , Image Processing, Computer-Assisted/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...