Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Virol ; 98(3): e0183823, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38426726

ABSTRACT

Nipah virus (NiV) is a highly lethal, zoonotic Henipavirus (HNV) that causes respiratory and neurological signs and symptoms in humans. Similar to other paramyxoviruses, HNVs mediate entry into host cells through the concerted actions of two surface glycoproteins: a receptor-binding protein (RBP) that mediates attachment and a fusion glycoprotein (F) that triggers fusion in an RBP-dependent manner. NiV uses ephrin-B2 (EFNB2) and ephrin-B3 (EFNB3) as entry receptors. Ghana virus (GhV), a novel HNV identified in a Ghanaian bat, uses EFNB2 but not EFNB3. In this study, we employ a structure-informed approach to identify receptor-interfacing residues and systematically introduce GhV-RBP residues into a NiV-RBP backbone to uncover the molecular determinants of EFNB3 usage. We reveal two regions that severely impair EFNB3 binding by NiV-RBP and EFNB3-mediated entry by NiV pseudotyped viral particles. Further analyses uncovered two-point mutations (NiVN557SGhV and NiVY581TGhV) pivotal for this phenotype. Moreover, we identify NiV interaction with Y120 of EFNB3 as important for the usage of this receptor. Beyond these EFNB3-related findings, we reveal two domains that restrict GhV binding of EFNB2, confirm the HNV-head as an immunodominant target for polyclonal and monoclonal antibodies, and describe putative epitopes for GhV- and NiV-specific monoclonal antibodies. Cumulatively, the work presented here generates useful reagents and tools that shed insight to residues important for NiV usage of EFNB3, reveal regions critical for GhV binding of EFNB2, and describe putative HNV antibody-binding epitopes. IMPORTANCE: Hendra virus and Nipah virus (NiV) are lethal, zoonotic Henipaviruses (HNVs) that cause respiratory and neurological clinical features in humans. Since their initial outbreaks in the 1990s, several novel HNVs have been discovered worldwide, including Ghana virus. Additionally, there is serological evidence of zoonotic transmission, lending way to concerns about future outbreaks. HNV infection of cells is mediated by the receptor-binding protein (RBP) and the Fusion protein (F). The work presented here identifies NiV RBP amino acids important for the usage of ephrin-B3 (EFNB3), a receptor highly expressed in neurons and predicted to be important for neurological clinical features caused by NiV. This study also characterizes epitopes recognized by antibodies against divergent HNV RBPs. Together, this sheds insight to amino acids critical for HNV receptor usage and antibody binding, which is valuable for future studies investigating determinants of viral pathogenesis and developing antibody therapies.


Subject(s)
Henipavirus Infections , Henipavirus , Receptors, Virus , Humans , Amino Acids/genetics , Antibodies, Monoclonal/metabolism , Carrier Proteins/metabolism , Ephrin-B3/genetics , Ephrin-B3/chemistry , Ephrin-B3/metabolism , Epitopes/genetics , Epitopes/metabolism , Ghana , Hendra Virus/metabolism , Henipavirus/classification , Henipavirus/genetics , Henipavirus/metabolism , Mutagenesis , Nipah Virus/metabolism , Viral Envelope Proteins/genetics , Virus Internalization , Receptors, Virus/metabolism
2.
PLoS Negl Trop Dis ; 14(12): e0009004, 2020 12.
Article in English | MEDLINE | ID: mdl-33370288

ABSTRACT

A detailed understanding of the mechanisms underlying the capacity of a virus to break the species barrier is crucial for pathogen surveillance and control. New World (NW) mammarenaviruses constitute a diverse group of rodent-borne pathogens that includes several causative agents of severe viral hemorrhagic fever in humans. The ability of the NW mammarenaviral attachment glycoprotein (GP) to utilize human transferrin receptor 1 (hTfR1) as a primary entry receptor plays a key role in dictating zoonotic potential. The recent isolation of Tacaribe and lymphocytic choriominingitis mammarenaviruses from host-seeking ticks provided evidence for the presence of mammarenaviruses in arthropods, which are established vectors for numerous other viral pathogens. Here, using next generation sequencing to search for other mammarenaviruses in ticks, we identified a novel replication-competent strain of the NW mammarenavirus Tamiami (TAMV-FL), which we found capable of utilizing hTfR1 to enter mammalian cells. During isolation through serial passaging in mammalian immunocompetent cells, the quasispecies of TAMV-FL acquired and enriched mutations leading to the amino acid changes N151K and D156N, within GP. Cell entry studies revealed that both substitutions, N151K and D156N, increased dependence of the virus on hTfR1 and binding to heparan sulfate proteoglycans. Moreover, we show that the substituted residues likely map to the sterically constrained trimeric axis of GP, and facilitate viral fusion at a lower pH, resulting in viral egress from later endosomal compartments. In summary, we identify and characterize a naturally occurring TAMV strain (TAMV-FL) within ticks that is able to utilize hTfR1. The TAMV-FL significantly diverged from previous TAMV isolates, demonstrating that TAMV quasispecies exhibit striking genetic plasticity that may facilitate zoonotic spillover and rapid adaptation to new hosts.


Subject(s)
Antigens, CD/metabolism , Arenaviridae Infections/transmission , Arenaviridae/genetics , Receptors, Transferrin/metabolism , Receptors, Virus/metabolism , Viral Envelope Proteins/genetics , Amino Acid Sequence/genetics , Animals , Arenaviridae/isolation & purification , Arenaviruses, New World , Cell Line , Chlorocebus aethiops , HEK293 Cells , Humans , Insect Vectors/virology , Sequence Alignment , Ticks/virology , Vero Cells , Viral Envelope/metabolism , Zoonoses/transmission , Zoonoses/virology
3.
Cell ; 183(7): 1901-1912.e9, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33248470

ABSTRACT

Long-term severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) shedding was observed from the upper respiratory tract of a female immunocompromised individual with chronic lymphocytic leukemia and acquired hypogammaglobulinemia. Shedding of infectious SARS-CoV-2 was observed up to 70 days, and of genomic and subgenomic RNA up to 105 days, after initial diagnosis. The infection was not cleared after the first treatment with convalescent plasma, suggesting a limited effect on SARS-CoV-2 in the upper respiratory tract of this individual. Several weeks after a second convalescent plasma transfusion, SARS-CoV-2 RNA was no longer detected. We observed marked within-host genomic evolution of SARS-CoV-2 with continuous turnover of dominant viral variants. However, replication kinetics in Vero E6 cells and primary human alveolar epithelial tissues were not affected. Our data indicate that certain immunocompromised individuals may shed infectious virus longer than previously recognized. Detection of subgenomic RNA is recommended in persistently SARS-CoV-2-positive individuals as a proxy for shedding of infectious virus.


Subject(s)
COVID-19/immunology , Common Variable Immunodeficiency/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , SARS-CoV-2/isolation & purification , Aged , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/complications , COVID-19/virology , Common Variable Immunodeficiency/blood , Common Variable Immunodeficiency/complications , Common Variable Immunodeficiency/virology , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/blood , Leukemia, Lymphocytic, Chronic, B-Cell/complications , Leukemia, Lymphocytic, Chronic, B-Cell/virology , Respiratory Tract Infections/blood , Respiratory Tract Infections/complications , Respiratory Tract Infections/immunology , Respiratory Tract Infections/virology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
4.
Life Sci Alliance ; 3(1)2020 01.
Article in English | MEDLINE | ID: mdl-31862858

ABSTRACT

The emergent zoonotic henipaviruses, Hendra, and Nipah are responsible for frequent and fatal disease outbreaks in domestic animals and humans. Specificity of henipavirus attachment glycoproteins (G) for highly species-conserved ephrin ligands underpins their broad host range and is associated with systemic and neurological disease pathologies. Here, we demonstrate that Cedar virus (CedV)-a related henipavirus that is ostensibly nonpathogenic-possesses an idiosyncratic entry receptor repertoire that includes the common henipaviral receptor, ephrin-B2, but, distinct from pathogenic henipaviruses, does not include ephrin-B3. Uniquely among known henipaviruses, CedV can use ephrin-B1 for cellular entry. Structural analyses of CedV-G reveal a key region of molecular specificity that directs ephrin-B1 utilization, while preserving a universal mode of ephrin-B2 recognition. The structural and functional insights presented uncover diversity within the known henipavirus receptor repertoire and suggest that only modest structural changes may be required to modulate receptor specificities within this group of lethal human pathogens.


Subject(s)
Ephrin-B1/metabolism , Henipavirus Infections/metabolism , Henipavirus/physiology , Viral Fusion Proteins/metabolism , Virus Internalization , Animals , Chiroptera/virology , Chlorocebus aethiops , Ephrin-B1/genetics , Ephrin-B2/genetics , Ephrin-B2/metabolism , HEK293 Cells , Henipavirus/isolation & purification , Henipavirus Infections/virology , Humans , Ligands , Protein Binding , Protein Structure, Secondary , Receptors, Virus/metabolism , Transfection , Vero Cells
5.
Proc Natl Acad Sci U S A ; 116(50): 25057-25067, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31767754

ABSTRACT

Nipah virus (NiV) is a highly pathogenic paramyxovirus that causes frequent outbreaks of severe neurologic and respiratory disease in humans with high case fatality rates. The 2 glycoproteins displayed on the surface of the virus, NiV-G and NiV-F, mediate host-cell attachment and membrane fusion, respectively, and are targets of the host antibody response. Here, we provide a molecular basis for neutralization of NiV through antibody-mediated targeting of NiV-F. Structural characterization of a neutralizing antibody (nAb) in complex with trimeric prefusion NiV-F reveals an epitope at the membrane-distal domain III (DIII) of the molecule, a region that undergoes substantial refolding during host-cell entry. The epitope of this monoclonal antibody (mAb66) is primarily protein-specific and we observe that glycosylation at the periphery of the interface likely does not inhibit mAb66 binding to NiV-F. Further characterization reveals that a Hendra virus-F-specific nAb (mAb36) and many antibodies in an antihenipavirus-F polyclonal antibody mixture (pAb835) also target this region of the molecule. Integrated with previously reported paramyxovirus F-nAb structures, these data support a model whereby the membrane-distal region of the F protein is targeted by the antibody-mediated immune response across henipaviruses. Notably, our domain-specific sequence analysis reveals no evidence of selective pressure at this region of the molecule, suggestive that functional constraints prevent immune-driven sequence variation. Combined, our data reveal the membrane-distal region of NiV-F as a site of vulnerability on the NiV surface.


Subject(s)
Antibodies, Neutralizing , Hendra Virus , Viral Fusion Proteins , Virus Internalization , Antibodies, Monoclonal , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Cell Line, Tumor , Glycosylation , HEK293 Cells , Hendra Virus/chemistry , Hendra Virus/immunology , Hendra Virus/metabolism , Hendra Virus/physiology , Humans , Models, Molecular , Protein Binding , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/immunology , Viral Fusion Proteins/metabolism
6.
J Virol ; 93(1)2019 01 01.
Article in English | MEDLINE | ID: mdl-30305351

ABSTRACT

The emergence of Old and New World arenaviruses from rodent reservoirs persistently threatens human health. The GP1 subunit of the envelope-displayed arenaviral glycoprotein spike complex (GPC) mediates host cell recognition and is an important determinant of cross-species transmission. Previous structural analyses of Old World arenaviral GP1 glycoproteins, alone and in complex with a cognate GP2 subunit, have revealed that GP1 adopts two distinct conformational states distinguished by differences in the orientations of helical regions of the molecule. Here, through comparative study of the GP1 glycoprotein architectures of Old World Loei River virus and New World Whitewater Arroyo virus, we show that these rearrangements are restricted to Old World arenaviruses and are not induced solely by the pH change that is associated with virus endosomal trafficking. Our structure-based phylogenetic analysis of arenaviral GP1s provides a blueprint for understanding the discrete structural classes adopted by these therapeutically important targets.IMPORTANCE The genetically and geographically diverse group of viruses within the family Arenaviridae includes a number of zoonotic pathogens capable of causing fatal hemorrhagic fever. The multisubunit GPC glycoprotein spike complex displayed on the arenavirus envelope is a key determinant of species tropism and a primary target of the host humoral immune response. Here, we show that the receptor-binding GP1 subcomponent of the GPC spike from Old World but not New World arenaviruses adopts a distinct, pH-independent conformation in the absence of the cognate GP2. Our analysis provides a structure-based approach to understanding the discrete conformational classes sampled by these therapeutically important targets, informing strategies to develop arenaviral glycoprotein immunogens that resemble GPC as presented on the mature virion surface.


Subject(s)
Arenaviruses, New World/classification , Arenaviruses, Old World/classification , Viral Envelope Proteins/chemistry , Arenaviruses, New World/chemistry , Arenaviruses, New World/metabolism , Arenaviruses, Old World/chemistry , Arenaviruses, Old World/metabolism , Endosomes/virology , Evolution, Molecular , Hydrogen-Ion Concentration , Models, Molecular , Phylogeny , Protein Structure, Secondary
7.
Emerg Infect Dis ; 24(10): 1795-1805, 2018 10.
Article in English | MEDLINE | ID: mdl-30226157

ABSTRACT

The substantial increase in prevalence and emergence of antigenically divergent or highly pathogenic influenza A(H7N9) viruses during 2016-17 raises concerns about the epizootic potential of these viruses. We investigated the evolution and adaptation of H7N9 viruses by analyzing available data and newly generated virus sequences isolated in Guangdong Province, China, during 2015-2017. Phylogenetic analyses showed that circulating H7N9 viruses belong to distinct lineages with differing spatial distributions. Hemagglutination inhibition assays performed on serum samples from patients infected with these viruses identified 3 antigenic clusters for 16 strains of different virus lineages. We used ancestral sequence reconstruction to identify parallel amino acid changes on multiple separate lineages. We inferred that mutations in hemagglutinin occur primarily at sites involved in receptor recognition or antigenicity. Our results indicate that highly pathogenic strains likely emerged from viruses circulating in eastern Guangdong Province during March 2016 and are associated with a high rate of adaptive molecular evolution.


Subject(s)
Evolution, Molecular , Genetic Variation , Influenza A Virus, H7N9 Subtype/classification , Influenza A Virus, H7N9 Subtype/genetics , Influenza in Birds/epidemiology , Influenza in Birds/virology , Influenza, Human/epidemiology , Influenza, Human/virology , Amino Acid Sequence , Animals , Antigenic Variation , Birds , China/epidemiology , Genome, Viral , Genotype , Geography, Medical , History, 21st Century , Humans , Influenza A Virus, H7N9 Subtype/immunology , Influenza A Virus, H7N9 Subtype/isolation & purification , Influenza in Birds/history , Influenza, Human/history , Phylogeny , RNA, Viral
9.
Cell Chem Biol ; 25(5): 571-584.e8, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29576533

ABSTRACT

Glycosylceramides that activate CD1d-restricted invariant natural killer T (iNKT) cells have potential therapeutic applications for augmenting immune responses against cancer and infections. Previous studies using mouse models identified sphinganine variants of α-galactosylceramide as promising iNKT cell activators that stimulate cytokine responses with a strongly proinflammatory bias. However, the activities of sphinganine variants in mice have generally not translated well to studies of human iNKT cell responses. Here, we show that strongly proinflammatory and anti-tumor iNKT cell responses were achieved in mice by a variant of α-galactosylceramide that combines a sphinganine base with a hydrocinnamoyl ester on C6″ of the sugar. Importantly, the activities observed with this variant were largely preserved for human iNKT cell responses. Structural and in silico modeling studies provided a mechanistic basis for these findings and suggested basic principles for capturing useful properties of sphinganine analogs of synthetic iNKT cell activators in the design of immunotherapeutic agents.


Subject(s)
Antineoplastic Agents, Immunological/chemistry , Antineoplastic Agents, Immunological/pharmacology , Galactosylceramides/chemistry , Galactosylceramides/pharmacology , Lymphocyte Activation/drug effects , Natural Killer T-Cells/drug effects , Neoplasms/therapy , Adolescent , Adult , Aged , Animals , Antigens, CD1d/immunology , Cell Line, Tumor , Cells, Cultured , Female , Humans , Immunotherapy , Mice , Mice, Inbred C57BL , Molecular Docking Simulation , Natural Killer T-Cells/immunology , Neoplasms/immunology
10.
PLoS Pathog ; 12(2): e1005418, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26849049

ABSTRACT

Lassa virus is an enveloped, bi-segmented RNA virus and the most prevalent and fatal of all Old World arenaviruses. Virus entry into the host cell is mediated by a tripartite surface spike complex, which is composed of two viral glycoprotein subunits, GP1 and GP2, and the stable signal peptide. Of these, GP1 binds to cellular receptors and GP2 catalyzes fusion between the viral envelope and the host cell membrane during endocytosis. The molecular structure of the spike and conformational rearrangements induced by low pH, prior to fusion, remain poorly understood. Here, we analyzed the three-dimensional ultrastructure of Lassa virus using electron cryotomography. Sub-tomogram averaging yielded a structure of the glycoprotein spike at 14-Å resolution. The spikes are trimeric, cover the virion envelope, and connect to the underlying matrix. Structural changes to the spike, following acidification, support a viral entry mechanism dependent on binding to the lysosome-resident receptor LAMP1 and further dissociation of the membrane-distal GP1 subunits.


Subject(s)
Glycoproteins/metabolism , Lassa virus/metabolism , Lysosomal Membrane Proteins/metabolism , Protein Sorting Signals , Viral Envelope Proteins/metabolism , Animals , Chlorocebus aethiops , Glycoproteins/chemistry , Hydrogen-Ion Concentration , Lassa virus/chemistry , Lassa virus/ultrastructure , Lysosomal Membrane Proteins/chemistry , Models, Molecular , Molecular Conformation , Multiprotein Complexes , Protein Binding , Protein Structure, Tertiary , Vero Cells , Viral Envelope Proteins/chemistry , Virion , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL
...