Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 159: 156-172, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36708852

ABSTRACT

Hard dental tissue pathologies, such as caries, are conventionally managed through replacement by tooth-colored inert biomaterials. Tissue engineering provides novel treatment approaches to regenerate lost dental tissues based on bioactive materials and/or signaling molecules. While regeneration in the form of reparative dentin (osteo-dentin) is feasible, the recapitulation of the tubular microstructure of ortho-dentin and its special features is sidelined. This study characterized in vitro, and in vivo human EDTA-treated, freeze-dried dentin matrices (HTFD scaffolds) conditioned with calcium phosphate nanoparticles (NPs) bearing plasmids encoding dentinogenesis-inducing factors (pBMP2/NPs or pDMP1/NPs). The uptake and transfection efficiency of the synthesized NPs on dental pulp stem cells (DPSCs) increased in a concentration- and time-dependent manner, as evaluated qualitatively by confocal laser microscopy and transmission electron microscopy, and quantitatively by flow cytometry, while, in parallel, cell viability decreased. HTFD scaffolds conditioned with the optimal transfectability-to-viability concentration at 4 µg Ca/mL of each of the pBMP2/NPs or pDMP1/NPs preserved high levels of cell viability, evidenced by live/dead staining in vitro and caused no adverse reactions after implantation on C57BL6 mice in vivo. HTFD/NPs constructs induced rapid and pronounced odontogenic shift of the DPSCs, as evidenced by relevant gene expression patterns of RunX2, ALP, BGLAP, BMP-2, DMP-1, DSPP by real-time PCR, and acquirement of polarized meta-mitotic phenotype with cellular protrusions entering the dentinal tubules as visualized by scanning electron microscopy. Taken together, HTFD/NPs constitute a promising tool for customized reconstruction of the ortho-dentin/odontoblastic layer barrier and preservation of pulp vitality. STATEMENT OF SIGNIFICANCE: In clinical dentistry, the most common therapeutic approach for the reconstruction of hard dental tissue defects is the replacement by resin-based restorative materials. Even modern bioactive materials focus on reparative dentinogenesis, leading to amorphous dentin-bridge formation in proximity to the pulp. Therefore, the natural microarchitecture of tubular ortho-dentin is not recapitulated, and the sensory and defensive role of odontoblasts is sidelined. This study approaches the reconstruction at the dentin-pulp interface using a construct of human treated dentin (HTFD) scaffold and plasmid-carrying nanoparticles (NPs) encoding dentinogenic factors (DMP-1 or BMP-2) with excellent in vitro and in vivo properties. As a future perspective, the HTFD/NPs constructs could act as bio-fillings for personalized reconstruction of the dentin-pulp interface.


Subject(s)
Nanoparticles , Tissue Engineering , Humans , Animals , Mice , Tissue Scaffolds/chemistry , Cell Differentiation , Cells, Cultured , Stem Cells/metabolism , Mice, Inbred C57BL , DNA/metabolism , Calcium Phosphates/metabolism , Dentin , Plasmids , Dental Pulp , Bone Morphogenetic Protein 2/metabolism
2.
Cell Biol Toxicol ; 37(4): 573-593, 2021 08.
Article in English | MEDLINE | ID: mdl-33205376

ABSTRACT

Zinc oxide particles were synthesized in various sizes and shapes, i.e., spheres of 40-nm, 200-nm, and 500-nm diameter and rods of 40∙100 nm2 and 100∙400 nm2 (all PVP-stabilized and well dispersed in water and cell culture medium). Crystallographically, the particles consisted of the hexagonal wurtzite phase with a primary crystallite size of 20 to 100 nm. The particles showed a slow dissolution in water and cell culture medium (both neutral; about 10% after 5 days) but dissolved within about 1 h in two different simulated lysosomal media (pH 4.5 to 4.8). Cells relevant for respiratory exposure (NR8383 rat alveolar macrophages) were exposed to these particles in vitro. Viability, apoptosis, and cell activation (generation of reactive oxygen species, ROS, release of cytokines) were investigated in an in vitro lung cell model with respect to the migration of inflammatory cells. All particle types were rapidly taken up by the cells, leading to an increased intracellular zinc ion concentration. The nanoparticles were more cytotoxic than the microparticles and comparable with dissolved zinc acetate. All particles induced cell apoptosis, unlike dissolved zinc acetate, indicating a particle-related mechanism. Microparticles induced a stronger formation of reactive oxygen species than smaller particles probably due to higher sedimentation (cell-to-particle contact) of microparticles in contrast to nanoparticles. The effect of particle types on the cytokine release was weak and mainly resulted in a decrease as shown by a protein microarray. In the particle-induced cell migration assay (PICMA), all particles had a lower effect than dissolved zinc acetate. In conclusion, the biological effects of zinc oxide particles in the sub-toxic range are caused by zinc ions after intracellular dissolution, by cell-to-particle contacts, and by the uptake of zinc oxide particles into cells. Graphical headlights • The cytotoxicity of zinc oxide particles is mainly due to the intracellular release of zinc ions. • The size and shape of zinc oxide micro- and nanoparticles has only small effects on lung cells in the sub-toxic range. • Zinc oxide particles are rapidly taken up by cells, regardless of their size and shape. • Zinc oxide particles rapidly dissolve after cellular uptake in endolysosomes.


Subject(s)
Nanoparticles , Zinc Oxide , Animals , Macrophages, Alveolar , Nanoparticles/toxicity , Particle Size , Rats , Reactive Oxygen Species , Zinc Oxide/toxicity
3.
Mater Sci Eng C Mater Biol Appl ; 99: 357-366, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30889709

ABSTRACT

Silver nanoparticles loaded fibrillar collagen-chitosan matrix (CC) was prepared by biomimetic approach by blending silver nanoparticles (tAgNPs), collagen fibril and chitosan hydrogel followed by cross-linking and biomineralization. Electron micrograph showed that the surface of the composites exhibited native fibrillar morphology of collagen and their cross-section revealed layer-like arrangement of native fibrillar collagen. The mineralized composites exhibited surface mineralization of calcium phosphates incorporated with magnesium. FT-IR ATR analysis revealed the uniform blending of collagen and chitosan without any chemical interaction between them. XRD analysis showed incorporation of silver nanoparticles and lamellar structure of collagen and chitosan. The mechanical property of the dry composite film showed increase in tensile strength with the addition of chitosan and raised to 4.6 fold in M-CC4 composite. The incorporation of chitosan in M-CC3 led to 2.2 fold increase in mineralization as confirmed by the TGA analysis. Contact angle analysis revealed the hydrophilic nature of the composite. Hemolysis analysis of the composites verified the hemocompatible nature of composites with hemolysis < 5%. MTT assay for the composites was carried by seeding MG-63 cells and indicated cell viability > 80%. Antibacterial activity analysis showed the percent growth inhibition of about 27% and 37% for S. aureus and E. coli respectively. The prepared composite would possess silver nanoparticles loaded collagen fibril in the native state and the formed biomineral will be similar to the bone mineral. Hence the fabricated composite -could be used as a biomaterial for bone tissue engineering applications.


Subject(s)
Biomimetics/methods , Chitosan/pharmacology , Fibrillar Collagens/pharmacology , Minerals/chemistry , Silver/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Cell Adhesion/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Colony Count, Microbial , Escherichia coli/drug effects , Goats , Hemolysis/drug effects , Humans , Spectrometry, X-Ray Emission , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , Thermogravimetry , X-Ray Diffraction
4.
Mater Sci Eng C Mater Biol Appl ; 62: 450-7, 2016 May.
Article in English | MEDLINE | ID: mdl-26952446

ABSTRACT

The surface properties of poly-3-hydroxybutyrate (P3HB) membranes were modified using oxygen and an ammonia radio-frequency (RF, 13.56 MHz) plasma. The plasma treatment procedures used in the study only affected the surface properties, including surface topography, without inducing any significant changes in the crystalline structure of the polymer, with the exception being a power level of 250 W. The wettability of the modified P3HB surfaces was significantly increased after the plasma treatment, irrespective of the treatment procedure used. It was revealed that both surface chemistry and surface roughness changes caused by the plasma treatment affected surface wettability. A treatment-induced surface aging effect was observed and resulted in an increase in the water contact angle and a decrease in the surface free energy. However, the difference in the water contact angle between the polymers that had been treated for 4 weeks and the untreated polymer surfaces was still significant. A dependence between cell adhesion and proliferation and the polar component of the surface energy was revealed. The increase in the polar component after the ammonia plasma modification significantly increased cell adhesion and proliferation on biodegradable polymer surfaces compared to the untreated P3HB and the P3HB modified using an oxygen plasma.


Subject(s)
Hydroxybutyrates/chemistry , Membranes, Artificial , Plasma Gases/chemistry , Polyesters/chemistry , Wettability , Animals , Mice , NIH 3T3 Cells
5.
J Mater Chem B ; 3(23): 4654-4662, 2015 Jun 21.
Article in English | MEDLINE | ID: mdl-32262480

ABSTRACT

Bimetallic silver-gold nanoparticles were prepared by co-reduction using citrate and tannic acid in aqueous solution and colloidally stabilized with poly(N-vinylpyrrolidone) (PVP). The full composition range of silver : gold from 0 : 100 to 100 : 0 (n : n) was prepared with steps of 10 mol%. The nanoparticles were spherical, monodispersed, and had a diameter of ∼6 nm, except for Ag : Au 90 : 10 nanoparticles and pure Ag nanoparticles which were slightly larger. The size of the nanoalloys was determined by differential centrifugal sedimentation (DCS) and transmission electron microscopy (TEM). By means of X-ray powder diffraction (XRD) together with Rietveld refinement, precise lattice parameters, crystallite size and microstrain were determined. Scanning transmission electron microscopy (STEM) combined with energy-dispersive X-ray spectroscopy (EDX) and electron energy loss spectroscopy (EELS) showed that the particles consisted of a gold-rich core and a silver-rich shell. XRD and DCS indicated that the nanoparticles were not twinned, except for pure Ag and Ag : Au 90 : 10, although different domains were visible in the TEM. A remarkable negative deviation from Vegard's linear rule of alloy mixtures was observed (isotropic contraction of the cubic unit cell with a minimum at a 50 : 50 composition). This effect was also found for Ag:Au bulk alloys, but it was much more pronounced for the nanoalloys. Notably, it was much less pronounced for pure silver and gold nanoparticles. The microstrain was increased along with the contraction of the unit cell with a broad maximum at a 50 : 50 composition. The synthesis is based on aqueous solvents and can be easily scaled up to a yield of several mg of a well dispersed nanoalloy with application potential due to its tuneable antibacterial action (silver) and its optical properties for bioimaging.

6.
J Biomed Mater Res A ; 82(3): 731-9, 2007 Sep 01.
Article in English | MEDLINE | ID: mdl-17326228

ABSTRACT

The influence of dynamic mechanical loading and of surface nitridation on the nickel release from superelastic nickel-titanium orthodontic wires was investigated under ultrapure conditions. Commercially available superelastic NiTi arch wires (size 0.018 x 0.025'') without surface modification (Neo Sentalloy) and with nitrogen ion implantation surface treatment (Neo Sentalloy Ionguard) were analyzed. Mechanical loading of wire segments with a force similar to the physiological situation was performed with a frequency of 5 Hz in ultrapure water and saline solution, respectively. The release of nickel was monitored by atomic absorption spectroscopy for up to 36 days. The mechanically loaded wires released significantly more nickel ( approximately 45 ng cm(-2) d(-1)) than did nonloaded wires (<1 ng cm(-2) d(-1)). There was no statistically significant effect of the testing solution (water or NaCl) or of the surface nitridation. The total amount of released nickel was small in all cases, but may nevertheless account for the occasional clinical observations of adverse reactions during application of NiTi-based orthodontic appliances. The surface nitridation did not constrain the release of nickel from NiTi under continuous mechanical stress.


Subject(s)
Nickel/analysis , Orthodontic Wires/standards , Titanium/chemistry , Mechanics , Nickel/chemistry , Nitrogen/chemistry , Spectrophotometry, Atomic , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...