Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Nanotechnol ; 16(7): 830-839, 2021 07.
Article in English | MEDLINE | ID: mdl-33958764

ABSTRACT

Nanoparticulate albumin bound paclitaxel (nab-paclitaxel, nab-PTX) is among the most widely prescribed nanomedicines in clinical use, yet it remains unclear how nanoformulation affects nab-PTX behaviour in the tumour microenvironment. Here, we quantified the biodistribution of the albumin carrier and its chemotherapeutic payload in optically cleared tumours of genetically engineered mouse models, and compared the behaviour of nab-PTX with other clinically relevant nanoparticles. We found that nab-PTX uptake is profoundly and distinctly affected by cancer-cell autonomous RAS signalling, and RAS/RAF/MEK/ERK inhibition blocked its selective delivery and efficacy. In contrast, a targeted screen revealed that IGF1R kinase inhibitors enhance uptake and efficacy of nab-PTX by mimicking glucose deprivation and promoting macropinocytosis via AMPK, a nutrient sensor in cells. This study thus shows how nanoparticulate albumin bound drug efficacy can be therapeutically improved by reprogramming nutrient signalling and enhancing macropinocytosis in cancer cells.


Subject(s)
MAP Kinase Signaling System/drug effects , Mutation , Nanoparticles , Neoplasms, Experimental/drug therapy , Paclitaxel , Proto-Oncogene Proteins p21(ras)/genetics , Serum Albumin, Human , Animals , Cell Line, Tumor , Glucose/deficiency , Glucose/metabolism , Humans , Mice , Mice, Transgenic , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Paclitaxel/pharmacokinetics , Paclitaxel/pharmacology , Pinocytosis , Proto-Oncogene Proteins p21(ras)/metabolism , RAW 264.7 Cells , Serum Albumin, Human/chemistry , Serum Albumin, Human/pharmacology , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics
2.
Nat Commun ; 12(1): 898, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33563973

ABSTRACT

Radiation sensitivity varies greatly between tissues. The transcription factor p53 mediates the response to radiation; however, the abundance of p53 protein does not correlate well with the extent of radiosensitivity across tissues. Given recent studies showing that the temporal dynamics of p53 influence the fate of cultured cells in response to irradiation, we set out to determine the dynamic behavior of p53 and its impact on radiation sensitivity in vivo. We find that radiosensitive tissues show prolonged p53 signaling after radiation, while more resistant tissues show transient p53 activation. Sustaining p53 using a small molecule (NMI801) that inhibits Mdm2, a negative regulator of p53, reduced viability in cell culture and suppressed tumor growth. Our work proposes a mechanism for the control of radiation sensitivity and suggests tools to alter the dynamics of p53 to enhance tumor clearance. Similar approaches can be used to enhance killing of cancer cells or reduce toxicity in normal tissues following genotoxic therapies.


Subject(s)
Radiation Tolerance , Tumor Suppressor Protein p53/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , Humans , Mice , Neoplasms/drug therapy , Neoplasms/radiotherapy , Protein Binding/drug effects , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Proto-Oncogene Proteins c-mdm2/metabolism , Radiation Tolerance/drug effects , Tissue Distribution/drug effects , Tumor Burden/drug effects , Tumor Suppressor Protein p53/radiation effects , Xenograft Model Antitumor Assays
3.
Radiology ; 298(1): 123-132, 2021 01.
Article in English | MEDLINE | ID: mdl-33107799

ABSTRACT

Background Anaplastic thyroid cancer (ATC) is aggressive with a poor prognosis, partly because of the immunosuppressive microenvironment created by tumor-associated macrophages (TAMs). Purpose To understand the relationship between TAM infiltration, tumor vascularization, and corresponding drug delivery by using ferumoxytol-enhanced MRI and macrin in an ATC mouse model. Materials and Methods ATC tumors were generated in 6-8-week-old female B6129SF1/J mice through intrathyroid injection to model orthotopic tumors, or intravenously to model hematogenous metastasis, and prospectively enrolled randomly into treatment cohorts (n = 94 total; August 1, 2018, to January 15, 2020). Mice were treated with vehicle or combined serine/threonine-protein kinase B-Raf (BRAF) kinase inhibitor (BRAFi) and anti-PDL1 antibody (aPDL1). A subset was cotreated with therapies, including an approximately 70-nm model drug delivery nanoparticle (DDNP) to target TAM, and an antibody-neutralizing colony stimulating factor 1 receptor (CSF1R). Imaging was performed at the macroscopic level with ferumoxytol-MRI and microscopically with macrin. Genetically engineered BrafV600E/WT p53-null allografts were used and complemented by a GFP-transgenic derivative and human xenografts. Tumor-bearing organs were processed by using tissue clearing and imaged with confocal microscopy and MRI. Two-tailed Wilcoxon tests were used for comparison (≥five per group). Results TAM levels were higher in orthotopic thyroid tumors compared with pulmonary metastatic lesions by 79% ± 23 (standard deviation; P < .001). These findings were concordant with ferumoxytol MRI, which showed 136% ± 88 higher uptake in thyroid lesions (P = .02) compared with lung lesions. BRAFi and aPDL1 combination therapy resulted in higher tumor DDNP delivery by 39% ± 14 in pulmonary lesions (P = .004). Compared with the untreated group, tumors following BRAFi, aPDL1, and CSF1R-blocking antibody combination therapy did not show greater levels of TAM or DDNP (P = .82). Conclusion In a mouse model of anaplastic thyroid cancer, ferumoxytol MRI showed 136% ± 88 greater uptake in orthotopic thyroid tumors compared with pulmonary lesions, which reflected high vascularization and greater tumor-associated macrophage (TAM) levels. Serine/threonine-protein kinase B-Raf inhibitor and anti-programmed death ligand 1 antibody elicited higher local TAM levels and 43% ± 20 greater therapeutic nanoparticle delivery but not higher vascularization in pulmonary tumors. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Luker in this issue.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents/therapeutic use , Magnetic Resonance Imaging/methods , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Thyroid Carcinoma, Anaplastic/diagnostic imaging , Thyroid Carcinoma, Anaplastic/drug therapy , Animals , Antibodies, Monoclonal, Humanized/immunology , Antineoplastic Agents/immunology , B7-H1 Antigen/antagonists & inhibitors , Cell Line, Tumor , Disease Models, Animal , Female , Ferrosoferric Oxide , Immunity/immunology , Mice , Nanoparticles , Proto-Oncogene Proteins B-raf/immunology , Thyroid Carcinoma, Anaplastic/immunology , Tumor-Associated Macrophages/immunology
4.
Nat Commun ; 11(1): 3521, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32665556

ABSTRACT

Microtubules (MTs) mediate mitosis, directional signaling, and are therapeutic targets in cancer. Yet in vivo analysis of cancer cell MT behavior within the tumor microenvironment remains challenging. Here we developed an imaging pipeline using plus-end tip tracking and intravital microscopy to quantify MT dynamics in live xenograft tumor models. Among analyzed features, cancer cells in vivo displayed higher coherent orientation of MT dynamics along their cell major axes compared with 2D in vitro cultures, and distinct from 3D collagen gel cultures. This in vivo MT phenotype was reproduced in vitro when cells were co-cultured with IL4-polarized MΦ. MΦ depletion, MT disruption, targeted kinase inhibition, and altered MΦ polarization via IL10R blockade all reduced MT coherence and/or tumor cell elongation. We show that MT coherence is a defining feature for in vivo tumor cell dynamics and migration, modulated by local signaling from pro-tumor macrophages.


Subject(s)
Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Animals , Cell Cycle/genetics , Cell Cycle/physiology , Cell Movement/genetics , Cell Movement/physiology , Female , Humans , Macrophages/cytology , Macrophages/metabolism , Mice , Microtubule-Associated Proteins/genetics , Mitosis/genetics , Mitosis/physiology , Principal Component Analysis , RAW 264.7 Cells
5.
Sci Adv ; 6(21): eaaz8521, 2020 05.
Article in English | MEDLINE | ID: mdl-32494745

ABSTRACT

Interpreting how multicellular interactions in the tumor affect resistance pathways to BRAF and MEK1/2 MAPK inhibitors (MAPKi) remains a challenge. To investigate this, we profiled global ligand-receptor interactions among tumor and stromal/immune cells from biopsies of MAPK-driven disease. MAPKi increased tumor-associated macrophages (TAMs) in some patients, which correlated with poor clinical response, and MAPKi coamplified bidirectional tumor-TAM signaling via receptor tyrosine kinases (RTKs) including AXL, MERTK, and their ligand GAS6. In xenograft tumors, intravital microscopy simultaneously monitored in situ single-cell activities of multiple kinases downstream of RTKs, revealing MAPKi increased TAMs and enhanced bypass signaling in TAM-proximal tumor cells. As a proof-of-principle strategy to block this signaling, we developed a multi-RTK kinase inhibitor nanoformulation that accumulated in TAMs and delayed disease progression. Thus, bypass signaling can reciprocally amplify across nearby cell types, offering new opportunities for therapeutic design.

6.
Cytometry A ; 97(5): 528-539, 2020 05.
Article in English | MEDLINE | ID: mdl-31423731

ABSTRACT

Cell-to-cell heterogeneity can substantially impact drug response, especially for monoclonal antibody (mAb) therapies that may exhibit variability in both delivery (pharmacokinetics) and action (pharmacodynamics) within solid tumors. However, it has traditionally been difficult to examine the kinetics of mAb delivery at a single-cell level and in a manner that enables controlled dissection of target-dependent and -independent behaviors. To address this issue, here we developed an in vivo confocal (intravital) microscopy approach to study single-cell mAb pharmacology in a mosaic xenograft comprising a mixture of cancer cells with variable expression of the receptor HER2. As a proof-of-principle, we applied this model to trastuzumab therapy, a HER2-targeted mAb widely used for treating breast and gastric cancer patients. Trastuzumab accumulated to a higher degree in HER2-over expressing tumor cells compared to HER2-low tumor cells (~5:1 ratio at 24 h after administration) but importantly, the majority actually accumulated in tumor-associated phagocytes. For example, 24 h after IV administration over 50% of tumoral trastuzumab was found in phagocytes whereas at 48 h it was >80%. Altogether, these results reveal the dynamics of how phagocytes influence mAb behavior in vivo, and demonstrate an application of intravital microscopy for quantitative single-cell measurement of mAb distribution and retention in tumors with heterogeneous target expression. © 2019 International Society for Advancement of Cytometry.


Subject(s)
Breast Neoplasms , Receptor, ErbB-2 , Antibodies, Monoclonal , Breast Neoplasms/drug therapy , Cell Line, Tumor , Female , Humans , Intravital Microscopy , Kinetics , Trastuzumab/pharmacology
7.
ACS Nano ; 12(12): 12015-12029, 2018 12 26.
Article in English | MEDLINE | ID: mdl-30508377

ABSTRACT

Tumor-associated macrophages (TAMs) are widely implicated in cancer progression, and TAM levels can influence drug responses, particularly to immunotherapy and nanomedicines. However, it has been difficult to quantify total TAM numbers and their dynamic spatiotemporal distribution in a non-invasive and translationally relevant manner. Here, we address this need by developing a pharmacokinetically optimized, 64Cu-labeled polyglucose nanoparticle (Macrin) for quantitative positron emission tomography (PET) imaging of macrophages in tumors. By combining PET with high-resolution in vivo confocal microscopy and ex vivo imaging of optically cleared tissue, we found that Macrin was taken up by macrophages with >90% selectivity. Uptake correlated with the content of macrophages in both healthy tissue and tumors ( R2 > 0.9) and showed striking heterogeneity in the TAM content of an orthotopic and immunocompetent mouse model of lung carcinoma. In a proof-of-principle application, we imaged Macrin to monitor the macrophage response to neo-adjuvant therapy, using a panel of chemotherapeutic and γ-irradiation regimens. Multiple treatments elicited 180-650% increase in TAMs. Imaging identified especially TAM-rich tumors thought to exhibit enhanced permeability and retention of nanotherapeutics. Indeed, these TAM-rich tumors accumulated >700% higher amounts of a model poly(d,l-lactic- co-glycolic acid)- b-polyethylene glycol (PLGA-PEG) therapeutic nanoparticle compared to TAM-deficient tumors, suggesting that imaging may guide patient selection into nanomedicine trials. In an orthotopic breast cancer model, chemoradiation enhanced TAM and Macrin accumulation in tumors, which corresponded to the improved delivery and efficacy of two model nanotherapies, PEGylated liposomal doxorubicin and a TAM-targeted nanoformulation of the toll-like receptor 7/8 agonist resiquimod (R848). Thus, Macrin imaging offers a selective and translational means to quantify TAMs and inform therapeutic decisions.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Doxorubicin/pharmacology , Glucans/chemistry , Isotope Labeling , Lung Neoplasms/drug therapy , Macrophages/drug effects , Nanoparticles/chemistry , Animals , Copper Radioisotopes , Drug Screening Assays, Antitumor , Female , Lung Neoplasms/diagnostic imaging , Macrophages/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Neoadjuvant Therapy , Positron-Emission Tomography
8.
ACS Nano ; 12(12): 12814-12826, 2018 12 26.
Article in English | MEDLINE | ID: mdl-30550257

ABSTRACT

Prodrug strategies that facilitate localized and controlled activity of small-molecule therapeutics can reduce systemic exposure and improve pharmacokinetics, yet limitations in activation chemistry have made it difficult to assign tunable multifunctionality to prodrugs. Here, we present the design and application of a modular small-molecule caging strategy that couples bioorthogonal cleavage with a self-immolative linker and an aliphatic anchor. This strategy leverages recently discovered in vivo catalysis by a nanoencapsulated palladium compound (Pd-NP), which mediates alloxylcarbamate cleavage and triggers release of the activated drug. The aliphatic anchor enables >90% nanoencapsulation efficiency of the prodrug, while also allowing >104-fold increased cytotoxicity upon prodrug activation. We apply the strategy to a prodrug formulation of monomethyl auristatin E (MMAE), demonstrating its ability to target microtubules and kill cancer cells only after selective activation by Pd-NP. Computational pharmacokinetic modeling provides a mechanistic basis for the observation that the nanotherapeutic prodrug strategy can lead to more selective activation in the tumor, yet in a manner that is more sensitive to variable enhanced permeability and retention (EPR) effects. Combination treatment with the nanoencapsulated MMAE prodrug and Pd-NP safely blocks tumor growth, especially when combined with a local radiation therapy regimen that is known to improve EPR effects, and represents a conceptual step forward in prodrug design.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Doxorubicin/pharmacology , Drug Design , Fibrosarcoma/drug therapy , Metal Nanoparticles/chemistry , Palladium/chemistry , Prodrugs/pharmacology , Animals , Antibiotics, Antineoplastic/chemical synthesis , Antibiotics, Antineoplastic/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Doxorubicin/chemical synthesis , Doxorubicin/chemistry , Drug Screening Assays, Antitumor , Female , Fibrosarcoma/pathology , Humans , Mice , Mice, Inbred C57BL , Mice, Nude , Molecular Structure , Neoplasms, Experimental/diagnostic imaging , Neoplasms, Experimental/drug therapy , Prodrugs/chemical synthesis , Prodrugs/chemistry
9.
Chem Commun (Camb) ; 54(1): 42-45, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29185561

ABSTRACT

The receptor tyrosine kinase Mer (MERTK) is a promising drug target in cancer, where it can influence the metastasis-promoting signaling of both tumor cells and immune cells alike; however, no small molecule probes currently exist to selectively image Mer. In this work, we design and synthesize a selective near-infrared fluorescent molecular probe of Mer (MERi-SiR). Confocal microscopy of metastases in mice reveals predominant probe accumulation in Mer-expressing tumor-associated macrophages.


Subject(s)
Macrophages/pathology , Spectroscopy, Near-Infrared , c-Mer Tyrosine Kinase/metabolism , Animals , Binding Sites , Cell Line, Tumor , Cell Proliferation , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , Macrophages/cytology , Macrophages/metabolism , Mice , Microscopy, Confocal , Molecular Docking Simulation , Neoplasm Metastasis , Neoplasms/metabolism , Neoplasms/pathology , Protein Structure, Tertiary , Pyrimidines/chemistry , Pyrroles/chemistry , RNA Interference , RNA, Small Interfering/metabolism , Signal Transduction , Structure-Activity Relationship , c-Mer Tyrosine Kinase/antagonists & inhibitors , c-Mer Tyrosine Kinase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...