Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
PLoS One ; 19(3): e0299202, 2024.
Article in English | MEDLINE | ID: mdl-38466712

ABSTRACT

BACKGROUND: Thrombus formation in vitro under flow conditions is one of the most widely used methods to study haemostasis and to evaluate the activity of potential antithrombotic compounds. Assessment of the results of these experiments is often based on a quantification of microscopic images of thrombi. In a majority of reported analysis all thrombi visualised in an image are quantified as one homogenous class. In some protocols, qualitative assessment of thrombi morphology based on a visual comparison of evaluated images with representative images of predefined classes of thrombi are performed by experienced analysts. In presented paper we show how the quantitative analysis can be improved by classification of thrombi on the basis of defined morphological features prior to quantification and we suggest that machine learning-based approach can improve this way of analysis. METHODS: We tested the applicability of machine learning-based segmentation and classification of thrombi images to improve the outcome of quantification of the results of flow chamber assays. For this, we used the public domain machine learning software Ilastik for bioimage analysis developed at the European Molecular Biology Laboratory. A model was trained to distinguish two classes of thrombi based on certain morphological features which apparently correspond to the stage of thrombus development. Thrombi formed in the presence of a model antiplatelet compound-abciximab or in control conditions were quantified with the use of this model and the results were compared to quantification where all thrombi were quantified as a homogenous class. RESULTS: Machine learning-based analysis was capable of effective distinguishing of two classes of morphologically distinct platelet aggregates. The use of the model which segmented and quantified only the objects recognized as compacted structures provided results which better mirrored the actual effect of an antiplatelet treatment than quantification based on all structures. CONCLUSIONS: Classification of thrombi enabled by machine learning increases the relevance of quantitative information and allows better evaluation of the results of in vitro thrombosis assays.


Subject(s)
Blood Platelets , Thrombosis , Humans , Thrombosis/diagnostic imaging , Software
2.
Free Radic Biol Med ; 212: 255-270, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38122872

ABSTRACT

Reactive oxygen and nitrogen species (RONS) are a range of chemical individuals produced by living cells that contribute to the proper functioning of organisms. Cells under oxidative and nitrative stress show excessive production of RONS (including hydrogen peroxide, H2O2, hypochlorous acid, HOCl, and peroxynitrite, ONOO-) which may result in a damage proteins, lipids, and genetic material. Thus, the development of probes for in vivo detection of such oxidants is an active area of research, focusing on molecular redox sensors, including boronate-caged fluorophores. Here, we report a boronate-based styryl probe with a cationic pyridinium moiety (BANEP+) for the fluorescent detection of selected biological oxidants in vitro and in vivo. We compare the chemical reactivity of the BANEP+ probe toward H2O2, HOCl, and ONOO- and examine the influence of the major intracellular non-enzymatic antioxidant molecule, glutathione (GSH). We demonstrate that, at the physiologically relevant GSH concentration, the BANEP+ probe is efficiently oxidized by peroxynitrite, forming its phenolic derivative HNEP+. GSH does not affect the fluorescence properties of the BANEP+ and HNEP+ dyes. Finally, we report the identification of a novel type of molecular marker, with the boronate moiety replaced by the iodine atom, formed from the probe in the presence of HOCl and iodide anion. We conclude that the reported chemical reactivity and structural features of the BANEP+ probe may be a basis for the development of new red fluorescent probes for in vitro and in vivo detection of ONOO-.


Subject(s)
Oxidants , Peroxynitrous Acid , Humans , Peroxynitrous Acid/metabolism , Hydrogen Peroxide , Fluorescent Dyes/chemistry , Hypochlorous Acid , Reactive Nitrogen Species/chemistry , Inflammation
3.
Platelets ; 34(1): 2214618, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37246517

ABSTRACT

F11 receptor (F11R)/Junctional Adhesion Molecule -A (JAM-A) is a transmembrane protein which belongs to the immunoglobulin superfamily of cell adhesion molecules. F11R/JAM-A is present in epithelial cells, endothelial cells, leukocytes, and blood platelets. In epithelial and endothelial cells, it takes part in the formation of tight junctions. In these structures, molecules of F11R/JAM-A located on adjacent cells form homodimers and thus take part in stabilization of cellular layer integrity. In leukocytes, F11R/JAM-A was shown to play role in their transmigration through the vascular wall. Paradoxically, the function of F11R/JAM-A in blood platelets, where it was primarily discovered, is much less understood. It has been proven to regulate downstream signaling of αIIbß3 integrin and to mediate platelet adhesion under static conditions. It was also shown to contribute to transient interactions of platelets with inflamed vascular wall. The review is aimed at summarizing the current state of knowledge of the platelet pool of F11R/JAM-A. The article also presents perspectives of the future research to better understand the role of this protein in hemostasis, thrombosis, and other processes where blood platelets are involved.


The molecule of a complex name F11R/JAM-A is a protein which was primarily discovered on blood platelets. Later, the presence of the same molecule was confirmed on endothelial cells and epithelial cells. From the moment of the discovery, most of the research was focused on the role of this protein in the latter types of cells. It was found to be an important element of so-called tight junctions. These structures are crucial for maintaining of integrity and selective permeability of cellular layers composed of these types of cells. In the following years, the presence of F11R/JAM-A has also been reported on leukocytes. An important role of specific type of leukocytes is their penetration to the sites of inflammation. Interplay of F11R/JAM-A present on endothelium and that on leukocyte is involved in this process. But what about the role of this protein in blood platelets where it was originally discovered? There is limited knowledge regarding this issue. It was found to play a role in the ability of platelets to adhere to a surface under static conditions, but it is not known if the same is true under flow. Is the protein necessary for platelets to aggregate and form thrombus? Genetically engineered mice were created which lack this protein in blood platelets to answer this question. These platelets were abnormally reactive, as it transpired that the protein plays a role of a negative regulator to one of the most important mechanisms, which triggers platelet aggregation. But is this inhibitory function the only task F11R/JAM-A has to fulfil in platelets? Presented review collects all the knowledge regarding this protein in blood platelets and tries to show interesting routes which need exploration.


Subject(s)
Blood Platelets , Junctional Adhesion Molecule A , Humans , Blood Platelets/metabolism , Junctional Adhesion Molecule A/metabolism , Endothelial Cells/metabolism , Tight Junctions/metabolism , Cell Adhesion Molecules/metabolism , Receptors, Cell Surface/metabolism
4.
Int J Mol Sci ; 24(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36982387

ABSTRACT

Several studies report elevated blood platelet activation and altered platelet count in COVID-19 patients, but the role of the SARS-CoV-2 spike protein in this process remains intriguing. Additionally, there is no data that anti-SARS-CoV-2 neutralizing antibodies (nAb) may attenuate spike protein activity toward blood platelets. Our results indicate that under in vitro conditions, the spike protein increased the collagen-stimulated aggregation of isolated platelets and induced the binding of vWF to platelets in ristocetin-treated blood. The spike protein also significantly reduced collagen- or ADP-induced aggregation or decreased GPIIbIIIa (fibrinogen receptor) activation in whole blood, depending on the presence of the anti-spike protein nAb. Our findings suggest that studies on platelet activation/reactivity in COVID-19 patients or in donors vaccinated with anti-SARS-CoV-2 and/or previously-infected COVID-19 should be supported by measurements of spike protein and IgG anti-spike protein antibody concentrations in blood.


Subject(s)
COVID-19 , Humans , COVID-19/metabolism , Spike Glycoprotein, Coronavirus/metabolism , SARS-CoV-2/metabolism , Blood Platelets/metabolism , Antibodies, Viral , Antibodies, Neutralizing
5.
J Exp Clin Cancer Res ; 40(1): 283, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34493299

ABSTRACT

BACKGROUND: Successful colorectal cancer (CRC) therapy often depends on the accurate identification of primary tumours with invasive potential. There is still a lack of identified pathological factors associated with disease recurrence that could help in making treatment decisions. Neuromedin U (NMU) is a secretory neuropeptide that was first isolated from the porcine spinal cord, and it has emerged as a novel factor involved in the tumorigenesis and/or metastasis of many types of cancers. Previously associated with processes leading to CRC cell invasiveness, NMU has the potential to be a marker of poor outcome, but it has not been extensively studied in CRC. METHODS: Data from The Cancer Genome Atlas (TCGA) were used to analyse NMU and NMU receptor (NMUR1 and NMUR2) expression in CRC tissues vs. normal tissues, and real-time PCR was used for NMU and NMU receptor expression analysis. NMU protein detection was performed by immunoblotting. Secreted NMU was immunoprecipitated from cell culture-conditioned media and analysed by immunoblotting and protein sequencing. DNA demethylation by 5-aza-CdR was used to analyse the regulation of NMUR1 and NMUR2 expression. NMU receptor activity was monitored by detecting calcium mobilisation in cells loaded with fluo-4, and ERK1/2 kinase activation was detected after treatment with NMU or receptor agonist. Cell migration and invasion were investigated using membrane filters. Integrin expression was evaluated by flow cytometry. RESULTS: The obtained data revealed elevated expression of NMU and NMUR2 in CRC tissue samples and variable expression in the analysed CRC cell lines. We have shown, for the first time, that NMUR2 activation induces signalling in CRC cells and that NMU increases the motility and invasiveness of NMUR2-positive CRC cells and increases prometastatic integrin receptor subunit expression. CONCLUSIONS: Our results show the ability of CRC cells to respond to NMU via activation of the NMUR2 receptor, which ultimately leads to a shift in the CRC phenotype towards a more invasive phenotype.


Subject(s)
Colorectal Neoplasms/genetics , Neuropeptides/metabolism , Receptors, Neurotransmitter/metabolism , Cell Line, Tumor , Humans , Phenotype
6.
Eur J Med Chem ; 223: 113607, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34171656

ABSTRACT

A series of adenosine and 2'-deoxyadenosine pairs modified with a 1,12-dicarba-closo-dodecaborane cluster or alternatively with a phenyl group at the same position was synthesized, and their affinity was determined at A1, A2A, A2B and A3 adenosine receptors (ARs). While AR affinity differences were noted, a general tendency to preferentially bind A3 AR over other ARs was observed for most tested ligands. In particular, 5'-ethylcarbamoyl-N6-(3-phenylpropyl)adenosine (18), N6-(3-phenylpropyl)-2-chloroadenosine (24) and N6-(3-phenylpropyl)adenosine (40) showed nanomolar A3 affinity (Ki 4.5, 6.4 and 7.5 nM, respectively). Among the boron cluster-containing compounds, the highest A3 affinity (Ki 206 nM) was for adenosine derivative 41 modified at C2. In the matched molecular pairs, analogs bearing boron clusters were found to show lower binding affinity for adenosine receptors than the corresponding phenyl analogs. Nevertheless, interestingly, several boron cluster modified adenosine ligands showed significantly higher A3 receptor selectivity than the corresponding phenyl analogs: 7vs. 8, 15vs. 16, 17vs. 18.


Subject(s)
Adenosine A3 Receptor Agonists/pharmacology , Adenosine/analogs & derivatives , Adenosine/pharmacology , Receptor, Adenosine A3/metabolism , Adenosine/metabolism , Adenosine A3 Receptor Agonists/chemical synthesis , Adenosine A3 Receptor Agonists/metabolism , Animals , Boron Compounds/chemical synthesis , Boron Compounds/metabolism , Boron Compounds/pharmacology , CHO Cells , Cricetulus , HEK293 Cells , Humans , Ligands , Molecular Structure , Platelet Aggregation Inhibitors/chemical synthesis , Platelet Aggregation Inhibitors/metabolism , Platelet Aggregation Inhibitors/pharmacology , Structure-Activity Relationship
7.
Int J Mol Sci ; 22(6)2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33802928

ABSTRACT

Blood platelets' adenosine receptors (AR) are considered to be a new target for the anti-platelet therapy. This idea is based on in vitro studies which show that signaling mediated by these receptors leads to a decreased platelet response to activating stimuli. In vivo evidence for the antithrombotic activity of AR agonists published to date were limited, however, to the usage of relatively high doses given in bolus. The present study was aimed at verifying if these substances used in lower doses in combination with inhibitors of P2Y12 could serve as components of dual anti-platelet therapy. We have found that a selective A2A agonist 2-hexynyl-5'-N-ethylcarboxamidoadenosine (HE-NECA) improved the anti-thrombotic properties of either cangrelor or prasugrel in the model of ferric chloride-induced experimental thrombosis in mice. Importantly, HE-NECA was effective not only when applied in bolus as other AR agonists in the up-to-date published studies, but also when given chronically. In vitro thrombus formation under flow conditions revealed that HE-NECA enhanced the ability of P2Y12 inhibitors to decrease fibrinogen content in thrombi, possibly resulting in their lower stability. Adenosine receptor agonists possess a certain hypotensive effect and an ability to increase the blood-brain barrier permeability. Therefore, the effects of anti-thrombotic doses of HE-NECA on blood pressure and the blood-brain barrier permeability in mice were tested. HE-NECA applied in bolus caused a significant hypotension in mice, but the effect was much lower when the substance was given in doses corresponding to that obtained by chronic administration. At the same time, no significant effect of HE-NECA was observed on the blood-brain barrier. We conclude that chronic administration of the A2A agonist can be considered a potential component of a dual antithrombotic therapy. However, due to the hypotensive effect of the substances, dosage and administration must be elaborated to minimize the side-effects. The total number of animals used in the experiments was 146.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Adenosine-5'-(N-ethylcarboxamide)/analogs & derivatives , Antithrombins/pharmacology , Fibrinogen/metabolism , Prasugrel Hydrochloride/pharmacology , Purinergic P1 Receptor Agonists/pharmacology , Thrombosis/metabolism , Adenosine Monophosphate/pharmacology , Adenosine-5'-(N-ethylcarboxamide)/pharmacology , Adult , Animals , Blood Pressure/drug effects , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/pathology , Chlorides , Diastole/drug effects , Female , Ferric Compounds , Humans , Laser-Doppler Flowmetry , Male , Mice, Inbred C57BL , Permeability/drug effects , Platelet Activation/drug effects , Platelet Aggregation/drug effects , Purinergic P2Y Receptor Antagonists/pharmacology , Systole/drug effects
8.
Molecules ; 26(4)2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33546456

ABSTRACT

Phosphodiesterase 5 (PDE5) is one of the most extensively studied phosphodiesterases that is highly specific for cyclic-GMP hydrolysis. PDE5 became a target for drug development based on its efficacy for treatment of erectile dysfunction. In the present study, we synthesized four novel analogues of the phosphodiesterase type 5 (PDE5) inhibitor-tadalafil, which differs in (i) ligand flexibility (rigid structure of tadalafil vs. conformational flexibility of newly synthesized compounds), (ii) stereochemistry associated with applied amino acid building blocks, and (iii) substitution with bromine atom in the piperonyl moiety. For both the intermediate and final compounds as well as for the parent molecule, we have established the crystal structures and performed a detailed analysis of their structural features. The initial screening of the cytotoxic effect on 16 different human cancer and non-cancer derived cell lines revealed that in most cases, the parent compound exhibited a stronger cytotoxic effect than new derivatives, except for two cell lines: HEK 293T (derived from a normal embryonic kidney, that expresses a mutant version of SV40 large T antigen) and MCF7 (breast adenocarcinoma). Two independent studies on the inhibition of PDE5 activity, based on both pure enzyme assay and modulation of the release of nitric oxide from platelets under the influence of tadalafil and its analogues revealed that, unlike a reference compound that showed strong PDE5 inhibitory activity, the newly obtained compounds did not have a noticeable effect on PDE5 activity in the range of concentrations tested. Finally, we performed an investigation of the toxicological effect of synthesized compounds on Caenorhabditis elegans in the highest applied concentration of 6a,b and 7a,b (160 µM) and did not find any effect that would suggest disturbance to the life cycle of Caenorhabditis elegans. The lack of toxicity observed in Caenorhabditis elegans and enhanced, strengthened selectivity and activity toward the MCF7 cell line made 7a,b good leading structures for further structure activity optimization and makes 7a,b a reasonable starting point for the search of new, selective cytotoxic agents.


Subject(s)
Caenorhabditis elegans/enzymology , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Phosphodiesterase 5 Inhibitors , Piperazines , Tadalafil , Animals , Drug Evaluation, Preclinical , HEK293 Cells , Humans , MCF-7 Cells , Phosphodiesterase 5 Inhibitors/chemical synthesis , Phosphodiesterase 5 Inhibitors/chemistry , Phosphodiesterase 5 Inhibitors/pharmacology , Piperazines/chemical synthesis , Piperazines/chemistry , Piperazines/pharmacology , Tadalafil/analogs & derivatives , Tadalafil/chemical synthesis , Tadalafil/chemistry , Tadalafil/pharmacology
9.
Int J Mol Sci ; 21(21)2020 Nov 06.
Article in English | MEDLINE | ID: mdl-33172065

ABSTRACT

Platelet biology owes to intravital studies not only a better understanding of platelets' role in primary hemostasis but also findings that platelets are important factors in inflammation and atherosclerosis. Researchers who enter the field of intravital platelet studies may be confused by the heterogeneity of experimental protocols utilized. On the one hand, there are a variety of stimuli used to activate platelet response, and on the other hand there are several approaches to measure the outcome of the activation. A number of possible combinations of activation factors with measurement approaches result in the aforementioned heterogeneity. The aim of this review is to present the most often used protocols in a systematic way depending on the stimulus used to activate platelets. By providing examples of studies performed with each of the protocols, we attempt to explain why a particular combination of stimuli and measurement method was applied to study a given aspect of platelet biology.


Subject(s)
Blood Platelets/physiology , Platelet Activation/physiology , Platelet Function Tests/methods , Animals , Atherosclerosis/blood , Hemostasis/physiology , Humans , Inflammation/blood , Platelet Aggregation/physiology , Platelet Function Tests/trends , Thrombosis/blood
10.
Biomolecules ; 10(6)2020 06 07.
Article in English | MEDLINE | ID: mdl-32517350

ABSTRACT

BACKGROUND: Fibrin formation and structure may be affected by a plethora of factors, including both genetic and posttranslational modifications, such as glycation, nitration or acetylation. METHODS: The present study examines the effect of fibrinogen glycation on fibrin polymerization, measured in fibrinogen concentration-standardized plasma of subjects with type 2 diabetes mellitus (T2DM) and in a solution of human fibrinogen exposed to 30 mM glucose for four days. RESULTS: The fibrin polymerization velocity (Vmax) observed in the T2DM plasma (median 0.0056; IQR 0.0049‒0.0061 AU/s) was significantly lower than in non-diabetic plasma (median 0.0063; IQR 0.0058‒0.0071 AU/s) (p < 0.05). Furthermore, significantly lower Vmax was observed for glucose-treated fibrinogen (Vmax 0.046; IQR 0.022‒0.085 AU/s) compared to control protein incubated with a pure vehicle (Vmax 0.053; IQR 0.034‒0.097 AU/s) (p < 0.05). The same tendency was observed in the fibrinogen samples supplemented with 6 mM glucose just before measurements. It is assumed that glucose may affect the ability of fibrinogen to form a stable clot in T2DM subjects, and that this impairment is likely to influences the outcomes of some diagnostic assays. As the example, the impaired clotting ability of glycated fibrinogen may considerably influence the results of the standard Clauss method, routinely used to determine fibrinogen concentration in plasma. The stoichiometric analysis demonstrated that spontaneous glycation at both the sites with high and low glycation potential clearly dominated in T2DM individuals in all fibrinogen chains.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Fibrin/metabolism , Fibrinogen/metabolism , Glucose/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/diagnosis , Female , Fibrin/chemistry , Fibrinogen/analysis , Glucose/chemistry , Humans , Male , Middle Aged , Polymerization
11.
Data Brief ; 30: 105516, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32395574

ABSTRACT

The data in this article focus on the F11 Receptor (F11R/JAM-A; Junctional Adhesion Molecule-A; JAM-A, F11R), a cell adhesion protein constitutively expressed on the membrane surface of circulating platelets and localized within the tight junctions of healthy endothelial cells (ECs). Previous reports have shown that F11R/JAM-A plays a critical role in the adhesion of platelets to an inflamed endothelium due to its' pathological expression on the luminal surface of the cytokine-inflamed endothelium. Since platelet adhesion to an inflamed endothelium is an early step in the development of atherosclerotic plaque formation, and with time, resulting in heart attacks and stroke, we conducted a long-term, study utilizing the atherosclerosis-prone ApoE -/- mice to attempt a blockade of the formation of atherosclerotic plaques by preventing the adhesion of platelets to the inflamed vasculature in vivo. Utilizing a nonhydrolyzable peptide derived from an amino acid sequence of F11R/JAM-A, peptide 4D, we have shown in culture that the adhesion of platelets to the inflamed endothelial cells could be blocked by peptide 4D. The present data demonstrate the positive health benefits of chronic peptide 4D administration to the atherosclerosis-prone ApoE-/- mice, and provides new information for potential use of this F11R derived peptide in the prevention of atherosclerosis. The data presented in this article provide further experimental support for the study presented in Babinska et al., Atherosclerosis 284 (2019) 92-101.

12.
Int J Mol Sci ; 21(9)2020 May 02.
Article in English | MEDLINE | ID: mdl-32370146

ABSTRACT

Blood platelets play a crucial role in the early stages of atherosclerosis development. The process is believed to require firm adhesion of platelets to atherosclerosis-prone sites of the artery. However, little evidence exists regarding whether the blood platelets of individuals with pathological conditions associated with atherosclerosis have higher potential for adhesion. This process is to a large extent dependent on receptors present on the platelet membrane. Therefore, the aim of the presented study was to determine whether blood platelets from diabetic patients have higher capacity of adhesion under flow conditions and how diabetes affects one of the crucial platelet receptors involved in the process of adhesion-GPIIIa. The study compares the ability of platelets from non-diabetic and diabetic humans to interact with fibrinogen and von Willebrand factor, two proteins found in abundance on an inflamed endothelium, under flow conditions. The activation and reactivity of the blood platelets were also characterized by flow cytometry. Platelets from diabetic patients did not demonstrate enhanced adhesion to either studied protein, although they presented increased basal activation and responsiveness towards low concentrations of agonists. Platelets from diabetic patients were characterized by lower expression of GPIIIa, most likely due to an enhanced formation of platelet-derived microparticles PMPs, as supported by the observation of elevated concentration of this integrin and of GPIIIa-positive PMPs in plasma. We conclude that altered functionality of blood platelets in diabetes does not increase their adhesive potential. Increased glycation and decrease in the amount of GPIIIa on platelets may be partially responsible for this effect. Therefore, higher frequency of interactions of platelets with the endothelium, which is observed in animal models of diabetes, is caused by other factors. A primary cause may be a dysfunctional vascular wall.


Subject(s)
Blood Platelets/metabolism , Diabetes Mellitus, Type 2/blood , Hyperglycemia/blood , Integrin beta3/biosynthesis , Platelet Adhesiveness , Adult , Aged , Cell-Derived Microparticles/metabolism , Female , Flow Cytometry/methods , Humans , Male , Middle Aged , Platelet Activation , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism
13.
Atherosclerosis ; 284: 92-101, 2019 05.
Article in English | MEDLINE | ID: mdl-30877938

ABSTRACT

BACKGROUND AND AIMS: The F11 Receptor (F11R), AKA Junctional Adhesion Molecule-A (JAM-A) (F11R/JAM-A), is an adhesion protein constitutively expressed on the membrane surface of circulating platelets and the luminal surface of inflamed endothelial cells (EC). Platelet adhesion to an inflamed endothelium is one of the early steps of atherosclerotic plaque formation. Our previous studies, conducted with cultured EC in vitro, have demonstrated the expression of F11R/JAM-A on the luminal surface of inflamed EC, platelet adhesion to inflamed EC through F11R/JAM-A interactions, and inhibition of this interaction by the presence of F11R/JAM-A antagonistic peptide (F11Rpeptide 4D). In the present study, we examined in vivo the overall health-benefits and cardiovascular effects of long-term treatment of animals prone to atherosclerosis, ApoE-/- mice, with F11R-peptide 4D. METHODS: Twenty ApoE-/- mice were assigned to daily treatment with peptide 4D and compared to their counterparts control untreated mice. Mice were observed for wellness and survival. Plaque size in the aorta and heart was measured using histological analysis. Effects of peptide 4D (or scramble control) on platelet adhesion to inflamed endothelium were measured using intravital microscopy. RESULTS: Significant reductions in atherosclerotic plaques number and size, an overall robust health with longer survival were found in the peptide 4D treated group of ApoE-/- mice. Intravital microscopic studies conducted in exposed vessels of ApoE-/- mice demonstrated significant inhibition by peptide 4D of platelet adhesion to the cytokine-inflamed endothelium. CONCLUSIONS: Our results demonstrate that peptide 4D significantly reduces atherosclerotic plaque formation in ApoE-/- mice and inhibits platelet adhesion to the inflamed arterial endothelium.


Subject(s)
Atherosclerosis/prevention & control , Junctional Adhesion Molecule A/antagonists & inhibitors , Peptides/pharmacology , Peptides/therapeutic use , Animals , Disease Models, Animal , Female , Mice , Platelet Adhesiveness/drug effects
14.
Int J Exp Pathol ; 100(1): 41-48, 2019 02.
Article in English | MEDLINE | ID: mdl-30811756

ABSTRACT

Diabetes is associated with an increased risk of cardiovascular disease. This is partially attributed to an altered activation status of blood platelets in this disease. Previously, alterations have been shown in COX-1 and protease activated receptor (PAR)-3 receptor expression in platelets in two animal models of diabetes, there have not been studies which address expression of these proteins in mice with long-term streptozotocin (STZ)-induced diabetes. We have also addressed the effect of diabetes on platelet adhesion under flow conditions. With the use of flow cytometry, we have shown that certain markers of platelet basal activation, such as active form of αIIb ß3 and of CD40L were increased in STZ-induced diabetic mice. Platelets from STZ-induced diabetic mice were also more reactive when stimulated with PAR-4 activating peptide as revealed by higher expression of active form of αIIb ß3 , membrane-bound on vWillebrand Factor and binding of exogenous fluorescein isothyanate-labelled fibrinogen. Expression of COX-1 and production of thromboxane A2 in platelets of STZ-induced diabetic mice were higher than in control animals. We observed no effect of diabetes on ability of platelets to form stable adhesions with fibrinogen in flow conditions. We conclude that although certain similarities exist between patterns of activation of platelets in animal models of diabetes, the differences should also be taken into account.


Subject(s)
Blood Platelets/enzymology , Cyclooxygenase 1/blood , Diabetes Mellitus, Experimental/blood , Membrane Proteins/blood , Platelet Adhesiveness , Streptozocin , Animals , CD40 Ligand/blood , Coronary Vessels/metabolism , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/enzymology , Epoprostenol/metabolism , Male , Mice, Inbred C57BL , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Receptors, Proteinase-Activated/blood , Thromboxane A2/blood , von Willebrand Factor/metabolism
15.
Molecules ; 25(1)2019 Dec 28.
Article in English | MEDLINE | ID: mdl-31905703

ABSTRACT

Large inter-individual variation in platelet response to endogenous agonists and pharmacological agents, including resistance to antiplatelet therapy, prompts a search for novel platelet inhibitors and development new antithrombotic strategies. The present in vitro study evaluates the beneficial effects of three adenosine receptor (AR) agonists (regadenoson, LUF 5835 and NECA), different in terms of their selectivity for platelet adenosine receptors, when used alone and in combination with P2Y12 inhibitors, such as cangrelor or prasugrel metabolite. The anti-platelet effects of AR agonists were evaluated in healthy subjects (in the whole group and after stratification of individuals into high- and low-responders to P2Y12 inhibitors), using whole blood techniques, under flow (thrombus formation) and static conditions (study of platelet activation and aggregation). Compared to P2Y12 antagonists, AR agonists were much less or not effective under static conditions, but demonstrated similar antiplatelet activity in flow. In most cases, AR agonists significantly enhanced the anti-platelet effect of P2Y12 antagonists, despite possessing different selectivity profiles and antiplatelet activities. Importantly, their inhibitory effects in combination with P2Y12 antagonists were similar in high- and low-responders to P2Y12 inhibitors. In conclusion, a combination of anti-platelet agents acting via the P1 and P2 purinergic receptors represents a promising alternative to existing antithrombotic therapy.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Drug Resistance/drug effects , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation/drug effects , Prasugrel Hydrochloride/pharmacology , Purinergic P1 Receptor Agonists/pharmacology , Receptors, Purinergic P2Y12/metabolism , Adenosine Monophosphate/pharmacology , Female , Humans , Male , Thrombosis/drug therapy , Thrombosis/metabolism , Thrombosis/pathology
16.
J Pharmacol Toxicol Methods ; 94(Pt 1): 94-104, 2018.
Article in English | MEDLINE | ID: mdl-30031827

ABSTRACT

INTRODUCTION: Thrombus formation in vitro in flow conditions and its visualization and quantification with the use of microscopy are widely utilized to evaluate activity of compounds with a potential antithrombotic activity. Visualization and quantification of thrombi can be performed with the use of wide-field or confocal microscopy. Acquiring reliable numerical data from wide-field microscopy images of objects which have a complex three-dimensional structure is strongly influenced by the methods used for image analysis. This can be a possible source of inaccuracy in assessment of antithrombotic activity of a tested substance. We aimed to verify how different approaches to the quantification of wide-field images can affect the evaluation of an antiplatelet effect of a tested substance. METHODS: We compared three algorithms of image analysis to evaluate an effect of 2-hexynyl-5'-ethylcarboxamidoadenosine (HE-NECA), a compound of a moderate antiplatelet activity on thrombus formation, and of abciximab - a potent antiplatelet compound. Also, we studied how the results obtained in a wide-field imaging correspond to those obtained by means of confocal imaging. RESULTS: Three algorithms for analysis of wide-field images showed antiplatelet effect of HE-NECA or abciximab. Absolute values of thrombus area and outcomes of the evaluation of inhibition efficacy of HE-NECA were significantly different between the algorithms. Analysis of volumes and heights of thrombi obtained by confocal imaging confirmed inhibitory effect of HE-NECA, but the evaluated levels of inhibition were significantly different from that obtained by wide-field imaging. DISCUSSION: We conclude that wide-field imaging provides reliable qualitative data on an inhibitory effect on thrombus formation, despite differences which can emerge from various approaches to image analysis. However, quantitative evaluation and comparison of the efficacy of inhibitors on the basis of total area occupied by thrombi obtained by wide-field microscopy should be made with caution. To obtain a reliable quantitative assessment of the effect of a tested compound on thrombus structure the use of confocal microscopy is inevitable.


Subject(s)
Adenosine-5'-(N-ethylcarboxamide)/analogs & derivatives , Fibrinolytic Agents/pharmacology , Microscopy, Confocal/methods , Platelet Aggregation Inhibitors/pharmacology , Purinergic P1 Receptor Agonists/pharmacology , Receptors, Purinergic P1/metabolism , Thrombosis/metabolism , Abciximab/pharmacology , Adenosine/metabolism , Adenosine-5'-(N-ethylcarboxamide)/pharmacology , Algorithms , Evaluation Studies as Topic , Humans
17.
Platelets ; 29(5): 476-485, 2018 Jul.
Article in English | MEDLINE | ID: mdl-28745543

ABSTRACT

Numerous in vitro experiments have confirmed that a dysfunctional endothelium is characterized by, inter alia, a higher affinity for binding of platelets and leukocytes. However, there is still no direct evidence for greater interaction between platelets and intact endothelium in in vivo animal models of diabetes. Therefore, the present study examines the pro-adhesive properties of endothelium change in vivo as an effect of streptozotocin (STZ)-induced diabetes and the role of two key platelet receptors: GPIb-IX-V and GPIIb/IIIa. Mice of C57BL strain with streptozotocin-induced diabetes were used in the study. Flow cytometry was used to assess basal activation and reactivity of platelets. Adhesion of platelets to the vascular wall was visualized with the use of intravital microscopy in mesentery. The contribution of GPIIb/IIIa and GPIb-IX-V was evaluated by the injection of Fab fragments of respective antibodies. The integrity of the endothelium and vWf expression were evaluated histochemically. Basal activation and reactivity of platelets in streptozotocin-diabetic mice were elevated. Blood platelets adhered more often to the vascular wall of diabetic mice than nondiabetic animals: 11.9 (6.4; 32.8) plt/min/mm2 (median [IQR]) vs 2.7 (1.3; 6.4) plt/min/mm2. The injection of anti-GPIbα antibodies decreased the number of adhering platelets from 89.5 (34.0; 113.1) plt/min/mm2 (median [IQR]) in mice treated with isotype antibodies to 3.1 (1.7; 5.6) plt/min/mm2 in mice treated with blocking antibodies. The effect of GPIIb/IIIa blockage was not significant. Immunohistochemistry revealed a higher expression of vWF in the endothelium of STZ mice, but no substantial changes in endothelial morphology were detected. To conclude, the study shows that the platelets interact more frequently with the mesenteric vascular bed in mice with 1-month STZ-induced diabetes than in healthy mice. These interactions are mediated via platelet GPIb-IX-V and are driven by increased expression of vWF in endothelial cells.


Subject(s)
Blood Platelets/metabolism , Diabetes Mellitus, Experimental/blood , Intravital Microscopy/methods , Platelet Adhesiveness/drug effects , von Willebrand Factor/metabolism , Animals , Endothelium, Vascular/metabolism , Humans , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Up-Regulation
18.
Blood Cells Mol Dis ; 65: 16-22, 2017 06.
Article in English | MEDLINE | ID: mdl-28460264

ABSTRACT

INTRODUCTION: Recent studies have shown that it may be the concentration of thrombin, which is discriminative in determining of the mechanism of platelet activation via protease activated receptors (PARs). Whether the observed phenomenon of differentiated responses of mouse platelets to various thrombin concentrations in non-diabetic db/+ and diabetic db/db mice depends upon the concerted action of various PARs, remains to be established. RESULTS: We found elevated reactivity of platelets, as well as the enhanced PAR-3 expression in response to both the used concentrations of AYPGKF in db/db mice, as compared to db/+ heterozygotes. At low concentration of thrombin platelets from diabetic mice demonstrated hyperreactivity, reflected by higher expression of PAR-3. For higher thrombin concentration, blood platelets from db/db mice appeared hyporeactive, compared to db/+ animals, while no significant differences in PAR-3 expression were observed between diabetic and non-diabetic mice. CONCLUSIONS: The novel and previously unreported finding resulting from our study is that the increased expression of PAR-3 in response to either TRAP for PAR-4 or low thrombin (when PAR-4 is not the efficient thrombin receptor) may be one of the key events contributing to higher reactivity of platelets in db/db mice.


Subject(s)
Blood Platelets/metabolism , Cell Adhesion Molecules/metabolism , Platelet Activation , Tartrate-Resistant Acid Phosphatase/metabolism , Thrombin/metabolism , Adaptor Proteins, Signal Transducing , Animals , Biomarkers , Blood Platelets/drug effects , Cell Adhesion Molecules/genetics , Cell Cycle Proteins , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Flow Cytometry , Gene Expression , Male , Mice , Oligopeptides/pharmacology , Platelet Activation/drug effects , Platelet Activation/genetics
19.
PLoS One ; 11(1): e0146346, 2016.
Article in English | MEDLINE | ID: mdl-26751810

ABSTRACT

INTRODUCTION: The paper describes an alternative method for quantification of in vivo ADP-induced thromboembolism. The aim of the studies was to develop a method of quantification which would not require either extravasation or labelling of platelets. Our proposed approach is based on the monitoring of changes of blood flow with the use of laser Doppler flowmetry. MATERIALS AND METHODS: Mice of C57Bl strain were used in the study. ADP was injected to the vena cava and blood flow was monitored with the use of a laser Doppler flowmeter in the mesentery. Measurements in platelet-depleted mice, mice pretreated with cangrelor, an ADP receptor antagonist, and eptifibatide, a blocker of fibrinogen binding to GPIIbIIIa, were conducted as the proof-of-concept in the performed experiments. Intravital microscopy and ex vivo imaging of organs was performed to identify the sites of aggregate formation resulting from ADP injection. RESULTS: The injection of ADP resulted in a dose-dependent reduction of the blood flow in the mesentery. These responses were fully attributable to blood platelet aggregation, as shown by the lack of the effect in platelet-depleted mice, and significantly reduced responses in mice pretreated with cangrelor and eptifibatide. No platelet aggregate formation in mesenteric vessels was revealed by intravital microscopy, while ex vivo imaging showed accumulation of fluorescent labelled platelets in the lung. CONCLUSIONS: Injection of ADP to the venous system results in the formation of platelet aggregates predominantly in the lung. This results in reversible blood flow cessation in peripheral blood vessels. The measurement of this blood flow cessation in the mesentery allows indirect measurement of ADP-induced pulmonary thromboembolism. We suggest that this approach can be useful for in vivo screening for antiplatelet drug candidates.


Subject(s)
Adenosine Diphosphate/adverse effects , Blood Platelets/cytology , Laser-Doppler Flowmetry , Pulmonary Embolism/physiopathology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Animals , Area Under Curve , Eptifibatide , Intravital Microscopy , Lung/physiopathology , Male , Mesentery/physiopathology , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence , Peptides/chemistry , Platelet Aggregation/drug effects , Platelet Aggregation Inhibitors/chemistry , Platelet Glycoprotein GPIIb-IIIa Complex/chemistry , Pulmonary Embolism/chemically induced , Thrombocytopenia/physiopathology
20.
Int J Pharm ; 503(1-2): 247-61, 2016 Apr 30.
Article in English | MEDLINE | ID: mdl-26319628

ABSTRACT

Direct use of poly(amido)amine (PAMAM) dendrimers as drugs may be limited, due to uncertain (cyto)toxicity. Peripheral blood components, which constitute the first line of a contact with administered pharmaceuticals, may become vastly affected by PAMAM dendrimers. The aim of this study was to explore how PAMAMs' polycationicity might affect blood platelet activation and reactivity, and thus trigger various haemostatic events. We monitored blood platelet reactivity in rats with experimental diabetes upon a long-term administration of the unmodified PAMAM dendrimers. In parallel, the effects on blood flow in a systemic circulation was recorded intravitally in mice administered with PAMAM G2, G3 or G4. Compounding was the in vitro approach to monitor the impact of PAMAM dendrimers on blood platelet activation and reactivity and on selected haemostatic and protein conformation parameters. We demonstrated the activating effects of polycations on blood platelets. Some diversity of the revealed outcomes considerably depended on the used approach and the particular technique employed to monitor blood platelet function. We discovered undesirable impact of plain PAMAM dendrimers on primary haemostasis and their prothrombotic influence. We emphasize the need of a more profound verifying of all the promising findings collected for PAMAMs with the use of well-designed in vivo preclinical studies.


Subject(s)
Blood Platelets/drug effects , Dendrimers/pharmacology , Animals , Arachidonic Acid/pharmacology , Blood Platelets/physiology , Collagen/pharmacology , Diabetes Mellitus, Experimental/blood , Fibrinogen/metabolism , Humans , Male , Mice, Inbred C57BL , Platelet Activation/drug effects , Polylysine/pharmacology , Polymyxins/pharmacology , Rats, Wistar , Splanchnic Circulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...