Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Spectrosc ; 58(9): 1106-15, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15479528

ABSTRACT

Time-resolved fluorescence data was collected from a series of 23 bulk crude petroleum oils and six microscopic hydrocarbon-bearing fluid inclusions (HCFI). The data was collected using a diode laser fluorescence lifetime microscope (DLFLM) over the 460-700 nm spectral range using a 405 nm excitation source. The correlation between intensity averaged lifetimes (tau) and chemical and physical parameters was examined with a view to developing a quantitative model for predicting the gross chemical composition of hydrocarbon liquids trapped in HCFI. It was found that tau is nonlinearly correlated with the measured polar and corrected alkane concentrations and that oils can be classified on this basis. However, these correlations all show a large degree of scatter, preventing accurate quantitative prediction of gross chemical composition of the oils. Other parameters such as API gravity and asphaltene, aromatic, and sulfur concentrations do not correlate well with tau measurements. Individual HCFI were analyzed using the DLFLM, and time-resolved fluorescence measurements were compared with tau data from the bulk oils. This enabled the fluid within the inclusions to be classified as either low alkane/high polar or high alkane/low polar. Within the high alkane/low polar group, it was possible to clearly discriminate HCFI from different locales and to see differences in the trapped hydrocarbon fluids from a single geological source. This methodology offers an alternative method for classifying the hydrocarbon content of HCFI and observing small variations in the trapped fluid composition that is less sensitive to fluctuations in the measurement method than fluorescence intensity based methods.


Subject(s)
Complex Mixtures/analysis , Hydrocarbons/analysis , Hydrocarbons/chemistry , Microscopy, Fluorescence/methods , Petroleum/analysis , Colloids/analysis , Colloids/chemistry , Complex Mixtures/chemistry , Particle Size
2.
Photosynth Res ; 71(1-2): 99-123, 2002.
Article in English | MEDLINE | ID: mdl-16228505

ABSTRACT

New absorption, linear dichroism (LD) and circular dichroism (CD) measurements at low temperatures on the Fenna-Matthews-Olson complex from Prosthecochloris aestuarii are presented. Furthermore, the anisotropy of fluorescence excitation spectra is measured and used to determine absolute LD spectra, i.e. corrected for the degree of orientation of the sample. In contrast to previous studies, this allows comparison of not only the shape but also the amplitude of the measured spectra with that calculated by means of an exciton model. In the exciton model, the point-dipole approximation is used and the calculations are based on the trimeric structure of the complex. An improved description of the absorption and LD spectra by means of the exciton model is obtained by simply using the same site energies and coupling strengths that were given by Louwe et al. (1997, J Phys Chem B 101: 11280-11287) and including three broadening mechanisms, which proved to be essential: Inhomogeneous broadening in a Monte Carlo approach, homogeneous broadening by using the homogeneous line shape determined by fluorescence line-narrowing measurements [Wendling et al. (2000) J Phys Chem B 104: 5825-5831] and lifetime broadening. An even better description is obtained when the parameters are optimized by a global fit of the absorption, LD and CD spectra. New site energies and coupling strengths are estimated. The amplitude of the LD spectrum is described quite well. The shape of the CD spectrum is modelled in a satisfactory way but its size can only be simulated by using a rather large value for the index of refraction of the medium surrounding the chromophores. It is shown that the estimated coupling strengths are compatible with the value of the dipole strength of bacteriochlorophyll a, when using the empty-cavity model for the local-field correction factor.

SELECTION OF CITATIONS
SEARCH DETAIL
...