Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 9(10): e111385, 2014.
Article in English | MEDLINE | ID: mdl-25360548

ABSTRACT

BACKGROUND: P2Y(6), a purinergic receptor for UDP, is enriched in atherosclerotic lesions and is implicated in pro-inflammatory responses of key vascular cell types and macrophages. Evidence for its involvement in atherogenesis, however, has been lacking. Here we use cell-based studies and three murine models of atherogenesis to evaluate the impact of P2Y(6) deficiency on atherosclerosis. METHODOLOGY/PRINCIPAL FINDINGS: Cell-based studies in 1321N1 astrocytoma cells, which lack functional P2Y(6) receptors, showed that exogenous expression of P2Y(6) induces a robust, receptor- and agonist-dependent secretion of inflammatory mediators IL-8, IL-6, MCP-1 and GRO1. P2Y(6)-mediated inflammatory responses were also observed, albeit to a lesser extent, in macrophages endogenously expressing P2Y(6) and in acute peritonitis models of inflammation. To evaluate the role of P2Y(6) in atherosclerotic lesion development, we used P2Y(6)-deficient mice in three mouse models of atherosclerosis. A 43% reduction in aortic arch plaque was observed in high fat-fed LDLR knockout mice lacking P2Y(6) receptors in bone marrow-derived cells. In contrast, no effect on lesion development was observed in fat-fed whole body P2Y(6)xLDLR double knockout mice. Interestingly, in a model of enhanced vascular inflammation using angiotensin II, P2Y(6) deficiency enhanced formation of aneurysms and exhibited a trend towards increased atherosclerosis in the aorta of LDLR knockout mice. CONCLUSIONS: P2Y(6) receptor augments pro-inflammatory responses in macrophages and exhibits a pro-atherogenic role in hematopoietic cells. However, the overall impact of whole body P2Y(6) deficiency on atherosclerosis appears to be modest and could reflect additional roles of P2Y(6) in vascular disease pathophysiologies, such as aneurysm formation.


Subject(s)
Atherosclerosis/metabolism , Macrophages/metabolism , Receptors, Purinergic P2/metabolism , Animals , Atherosclerosis/immunology , Cell Line, Tumor , Cytokines/metabolism , Female , Gene Knockout Techniques , Humans , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Phenotype , Receptors, LDL/deficiency , Receptors, LDL/genetics , Receptors, Purinergic P2/deficiency , Receptors, Purinergic P2/genetics
3.
PLoS One ; 8(2): e53192, 2013.
Article in English | MEDLINE | ID: mdl-23383297

ABSTRACT

BACKGROUND: Chronic glucocorticoid excess has been linked to increased atherosclerosis and general cardiovascular risk in humans. The enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ßHSD1) increases active glucocorticoid levels within tissues by catalyzing the conversion of cortisone to cortisol. Pharmacological inhibition of 11ßHSD1 has been shown to reduce atherosclerosis in murine models. However, the cellular and molecular details for this effect have not been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: To examine the role of 11ßHSD1 in atherogenesis, 11ßHSD1 knockout mice were created on the pro-atherogenic apoE⁻/⁻ background. Following 14 weeks of Western diet, aortic cholesterol levels were reduced 50% in 11ßHSD1⁻/⁻/apoE⁻/⁻ mice vs. 11ßHSD1⁺/⁺/apoE⁻/⁻ mice without changes in plasma cholesterol. Aortic 7-ketocholesterol content was reduced 40% in 11ßHSD1⁻/⁻/apoE⁻/⁻ mice vs. control. In the aortic root, plaque size, necrotic core area and macrophage content were reduced ∼30% in 11ßHSD1⁻/⁻/apoE⁻/⁻mice. Bone marrow transplantation from 11ßHSD1⁻/⁻/apoE⁻/⁻ mice into apoE⁻/⁻ recipients reduced plaque area 39-46% in the thoracic aorta. In vivo foam cell formation was evaluated in thioglycollate-elicited peritoneal macrophages from 11ßHSD1⁺/⁺/apoE⁻/⁻ and 11ßHSD1⁻/⁻/apoE⁻/⁻ mice fed a Western diet for ∼5 weeks. Foam cell cholesterol levels were reduced 48% in 11ßHSD1⁻/⁻/apoE⁻/⁻ mice vs. control. Microarray profiling of peritoneal macrophages revealed differential expression of genes involved in inflammation, stress response and energy metabolism. Several toll-like receptors (TLRs) were downregulated in 11ßHSD1⁻/⁻/apoE⁻/⁻ mice including TLR 1, 3 and 4. Cytokine release from 11ßHSD1⁻/⁻/apoE⁻/⁻-derived peritoneal foam cells was attenuated following challenge with oxidized LDL. CONCLUSIONS: These findings suggest that 11ßHSD1 inhibition may have the potential to limit plaque development at the vessel wall and regulate foam cell formation independent of changes in plasma lipids. The diminished cytokine response to oxidized LDL stimulation is consistent with the reduction in TLR expression and suggests involvement of 11ßHSD1 in modulating binding of pro-atherogenic TLR ligands.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Apolipoproteins E/genetics , Atherosclerosis/metabolism , Foam Cells/metabolism , Glucocorticoids/metabolism , Analysis of Variance , Animals , Atherosclerosis/prevention & control , Blood Pressure , Bone Marrow Transplantation , Cholesterol/metabolism , Diet, Atherogenic , Ketocholesterols/metabolism , Lipids/blood , Male , Mice , Mice, Knockout , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction , Toll-Like Receptors/metabolism
4.
Biochim Biophys Acta ; 1627(1): 15-25, 2003 May 13.
Article in English | MEDLINE | ID: mdl-12759188

ABSTRACT

A detailed characterization of a cardiac muscle-specific, ligand-regulated gene expression system was performed in transgenic mice using the inducing ligand mifepristone (MFP). Several lines of double transgenic mice were created that expressed a bacterial lacZ reporter gene in the heart, under the control of a MFP-activated transcription factor constitutively expressed in cardiac muscle. The transgenic mice, which were administered MFP at a dose of 1 micromol/l in the drinking water, responded to the ligand within 24 h. Induction of beta-galactosidase enzyme activity in the heart continued for up to 21 days and resulted in an average 17-fold increase in enzyme activity. The highest individual animal response measured was a 94-fold increase in enzyme activity. The EC(50) for MFP induction of beta-galactosidase activity in the heart was 0.7 micromol/l when MFP was administered in the drinking water. Pharmacokinetic analysis of MFP dosing in wild-type FVB/N mice showed that absorption was very rapid (T(max) 1-10 min), bioavailability was modest ( approximately 10%) and the t(1/2) of MFP in mouse plasma was determined to be approximately 5 h. Thus, the system functions effectively in transgenic mouse heart where induction of gene expression is sensitive and can be accomplished by a simple and broadly applicable drinking water protocol.


Subject(s)
Gene Expression Regulation/physiology , Heart/physiology , Lac Operon/physiology , Mifepristone/metabolism , Animals , Dose-Response Relationship, Drug , Genes, Regulator , HeLa Cells , Humans , Mice , Mice, Transgenic , Mifepristone/administration & dosage , Mifepristone/pharmacokinetics , Time Factors
5.
Proc Natl Acad Sci U S A ; 99(3): 1604-9, 2002 Feb 05.
Article in English | MEDLINE | ID: mdl-11818550

ABSTRACT

Transgenic overexpression of Cu(+2)/Zn(+2) superoxide dismutase 1 (SOD1) harboring an amyotrophic lateral sclerosis (ALS)-linked familial genetic mutation (SOD1(G93A)) in a Sprague-Dawley rat results in ALS-like motor neuron disease. Motor neuron disease in these rats depended on high levels of mutant SOD1 expression, increasing from 8-fold over endogenous SOD1 in the spinal cord of young presymptomatic rats to 16-fold in end-stage animals. Disease onset in these rats was early, approximately 115 days, and disease progression was very rapid thereafter with affected rats reaching end stage on average within 11 days. Pathological abnormalities included vacuoles initially in the lumbar spinal cord and subsequently in more cervical areas, along with inclusion bodies that stained for SOD1, Hsp70, neurofilaments, and ubiquitin. Vacuolization and gliosis were evident before clinical onset of disease and before motor neuron death in the spinal cord and brainstem. Focal loss of the EAAT2 glutamate transporter in the ventral horn of the spinal cord coincided with gliosis, but appeared before motor neuron/axon degeneration. At end-stage disease, gliosis increased and EAAT2 loss in the ventral horn exceeded 90%, suggesting a role for this protein in the events leading to cell death in ALS. These transgenic rats provide a valuable resource to pursue experimentation and therapeutic development, currently difficult or impossible to perform with existing ALS transgenic mice.


Subject(s)
Excitatory Amino Acid Transporter 2/physiology , Motor Neuron Disease/genetics , Superoxide Dismutase/genetics , Amino Acid Substitution , Animals , Animals, Genetically Modified , Brain/metabolism , Brain/pathology , Disease Models, Animal , Excitatory Amino Acid Transporter 2/blood , Excitatory Amino Acid Transporter 2/deficiency , Excitatory Amino Acid Transporter 2/genetics , Humans , Immunohistochemistry , Motor Neuron Disease/enzymology , Motor Neuron Disease/metabolism , Motor Neuron Disease/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mutagenesis, Site-Directed , Rats , Rats, Sprague-Dawley , Spinal Cord/metabolism , Spinal Cord/pathology , Superoxide Dismutase/blood , Superoxide Dismutase-1 , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...