Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 10024, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31296884

ABSTRACT

Nitisinone decreases homogentisic acid (HGA) in Alkaptonuria (AKU) by inhibiting the tyrosine metabolic pathway in humans. The effect of different daily doses of nitisinone on circulating and 24 h urinary excretion of phenylalanine (PA), tyrosine (TYR), hydroxyphenylpyruvate (HPPA), hydroxyphenyllactate (HPLA) and HGA in patients with AKU was studied over a four week period. Forty AKU patients, randomised into five groups of eight patients, received doses of 1, 2, 4 or 8 mg of nitisinone daily, or no drug (control). Metabolites were analysed by tandem mass spectrometry in 24 h urine and serum samples collected before and after nitisinone. Serum metabolites were corrected for total body water and the sum of 24 hr urine plus total body water metabolites of PA, TYR, HPPA, HPLA and HGA were determined. Body weight and urine urea were used to check on stability of diet and metabolism over the 4 weeks of study. The sum of quantities of urine metabolites (PA, TYR, HPPA, HPLA and HGA) were similar pre- and post-nitisinone. The sum of total body water metabolites were significantly higher post-nitisinone (p < 0.0001) at all doses. Similarly, combined 24 hr urine:total body water ratios for all analytes were significantly higher post-nitisinone, compared with pre-nitisinone baseline for all doses (p = 0.0002 - p < 0.0001). Significantly higher concentrations of metabolites from the tyrosine metabolic pathway were observed in a dose dependant manner following treatment with nitisinone and we speculate that, for the first time, experimental evidence of the metabolite pool that would otherwise be directed towards pigment formation, has been unmasked.


Subject(s)
Alkaptonuria/drug therapy , Alkaptonuria/pathology , Cyclohexanones/therapeutic use , Nitrobenzoates/therapeutic use , Tyrosine/metabolism , Adult , Alkaptonuria/genetics , Female , Homogentisic Acid/blood , Homogentisic Acid/urine , Humans , Male , Middle Aged , Phenylalanine/blood , Phenylalanine/urine , Pigments, Biological/metabolism , Tandem Mass Spectrometry , Tyrosine/blood , Tyrosine/urine
2.
Data Brief ; 20: 1620-1628, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30263914

ABSTRACT

Alkaptonuria is a rare genetic disorder characterized by a high level of circulating (and urine) homogentisic acid (HGA), which contributes to ochronosis when it is deposited in connective tissue as a pigmented polymer. In an observational study carried out by National AKU Centre (NAC) in Liverpool, a total of thirty-nine AKU patients attended yearly visits in varying numbers. At each visit a mixture of clinical, joint and spinal assessments were carried out and the results calculated to yield an AKUSSI (Alkaptonuria Severity Score Index), see "Nitisinone arrests ochronosis and decreases rate of progression of Alkaptonuria: evaluation of the effect of nitisinone in the United Kingdom National Alkaptonuria Centre" (Ranganath at el., 2018). The aim of this data article is to produce visual representation of the change in the components of AKUSSI over 3 years, through radar charts. The metabolic effect of nitisinone is shown through box plots.

3.
Mol Genet Metab ; 125(1-2): 127-134, 2018 09.
Article in English | MEDLINE | ID: mdl-30055994

ABSTRACT

QUESTION: Does Nitisinone prevent the clinical progression of the Alkaptonuria? FINDINGS: In this observational study on 39 patients, 2 mg of daily nitisinone inhibited ochronosis and significantly slowed the progression of AKU over a three-year period. MEANING: Nitisinone is a beneficial therapy in Alkaptonuria. BACKGROUND: Nitisinone decreases homogentisic acid (HGA), but has not been shown to modify progression of Alkaptonuria (AKU). METHODS: Thirty-nine AKU patients attended the National AKU Centre (NAC) in Liverpool for assessments and treatment. Nitisinone was commenced at V1 or baseline. Thirty nine, 34 and 22 AKU patients completed 1, 2 and 3 years of monitoring respectively (V2, V3 and V4) in the VAR group. Seventeen patients also attended a pre-baseline visit (V0) in the VAR group. Within the 39 patients, a subgroup of the same ten patients attended V0, V1, V2, V3 and V4 visits constituting the SAME Group. Severity of AKU was assessed by calculation of the AKU Severity Score Index (AKUSSI) allowing comparison between the pre-nitisinone and the nitisinone treatment phases. RESULTS: The ALL (sum of clinical, joint and spine AKUSSI features) AKUSSI rate of change of scores/patient/month, in the SAME group, was significantly lower at two (0.32 ±â€¯0.19) and three (0.15 ±â€¯0.13) years post-nitisinone when compared to pre-nitisinone (0.65 ±â€¯0.15) (p < .01 for both comparisons). Similarly, the ALL AKUSSI rate of change of scores/patient/month, in the VAR group, was significantly lower at one (0.16 ±â€¯0.08) and three (0.19 ±â€¯0.06) years post-nitisinone when compared to pre-nitisinone (0.59 ±â€¯0.13) (p < .01 for both comparisons). Combined ear and ocular ochronosis rate of change of scores/patient/month was significantly lower at one, two and three year's post-nitisinone in both VAR and SAME groups compared with pre-nitisinone (p < .05). CONCLUSION: This is the first indication that a 2 mg dose of nitisinone slows down the clinical progression of AKU. Combined ocular and ear ochronosis progression was arrested by nitisinone.


Subject(s)
Alkaptonuria/drug therapy , Cyclohexanones/administration & dosage , Nitrobenzoates/administration & dosage , Ochronosis/drug therapy , 4-Hydroxyphenylpyruvate Dioxygenase/metabolism , Alkaptonuria/epidemiology , Alkaptonuria/metabolism , Alkaptonuria/pathology , Disease Progression , Female , Homogentisic Acid/metabolism , Humans , Male , Middle Aged , Ochronosis/epidemiology , Ochronosis/metabolism , Ochronosis/pathology , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...