Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(37): eadi3192, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37713479

ABSTRACT

X-ray photoelectron spectroscopy (XPS) spectra from solid samples are conventionally referenced to the spectrometer Fermi level (FL). While, in the case of metallic samples, alignment of the sample and the spectrometer FLs can be directly verified from the measured Fermi edge position, thus allowing to assess the surface electrical potential, this is not a workable option for insulators. When applied, it generates a large spread in reported binding energy values that often exceed involved chemical shifts. By depositing insulating amorphous alumina thin films on a variety of conducting substrates with different work functions, we show not only that FL referencing fails but also that the Al2O3 energy levels align instead to the vacuum level, as postulated in the early days of XPS. Based on these model experiments that can be repeated for all sorts of thin-film insulators, a solution to the binding energy reference problem is proposed for reliable assessment of chemical bonding.

2.
ACS Appl Mater Interfaces ; 15(21): 26093-26103, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37204834

ABSTRACT

Direct electrification of oxygen-associated reactions contributes to large-scale electrical storage and the launch of the green hydrogen economy. The design of the involved catalysts can mitigate the electrical energy losses and improve the control of the reaction products. We evaluate the effect of the interface composition of electrocatalysts on the efficiency and productivity of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), both mechanistically and at device levels. The ORR and OER were benchmarked on mesoporous nickel(II) oxide and nickel cobaltite (NiO and NiCo2O4, respectively) obtained by a facile template-free hydrothermal synthesis. Physicochemical characterization showed that both NiO and NiCo2O4 are mesoporous and have a cubic crystal structure with abundant surface hydroxyl species. NiCo2O4 showed higher electrocatalytic activity in OER and selectivity to water as the terminal product of ORR. On the contrary, ORR over NiO yielded hydroxyl radicals as products of a Fenton-like reaction of H2O2. The product selectivity in ORR was used to construct two electrolyzers for electrified purification of oxygen and generation of hydroxyl radicals.

SELECTION OF CITATIONS
SEARCH DETAIL
...