Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Microlife ; 5: uqae006, 2024.
Article in English | MEDLINE | ID: mdl-38659623

ABSTRACT

The mimivirus 1.2 Mb genome was shown to be organized into a nucleocapsid-like genomic fiber encased in the nucleoid compartment inside the icosahedral capsid. The genomic fiber protein shell is composed of a mixture of two GMC-oxidoreductase paralogs, one of them being the main component of the glycosylated layer of fibrils at the surface of the virion. In this study, we determined the effect of the deletion of each of the corresponding genes on the genomic fiber and the layer of surface fibrils. First, we deleted the GMC-oxidoreductase, the most abundant in the genomic fiber, and determined its structure and composition in the mutant. As expected, it was composed of the second GMC-oxidoreductase and contained 5- and 6-start helices similar to the wild-type fiber. This result led us to propose a model explaining their coexistence. Then we deleted the GMC-oxidoreductase, the most abundant in the layer of fibrils, to analyze its protein composition in the mutant. Second, we showed that the fitness of single mutants and the double mutant were not decreased compared with the wild-type viruses under laboratory conditions. Third, we determined that deleting the GMC-oxidoreductase genes did not impact the glycosylation or the glycan composition of the layer of surface fibrils, despite modifying their protein composition. Because the glycosylation machinery and glycan composition of members of different clades are different, we expanded the analysis of the protein composition of the layer of fibrils to members of the B and C clades and showed that it was different among the three clades and even among isolates within the same clade. Taken together, the results obtained on two distinct central processes (genome packaging and virion coating) illustrate an unexpected functional redundancy in members of the family Mimiviridae, suggesting this may be the major evolutionary force behind their giant genomes.

2.
Essays Biochem ; 66(7): 915-934, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36148633

ABSTRACT

Measles, Nipah and Hendra viruses are severe human pathogens within the Paramyxoviridae family. Their non-segmented, single-stranded, negative-sense RNA genome is encapsidated by the nucleoprotein (N) within a helical nucleocapsid that is the substrate used by the viral RNA-dependent-RNA-polymerase (RpRd) for transcription and replication. The RpRd is a complex made of the large protein (L) and of the phosphoprotein (P), the latter serving as an obligate polymerase cofactor and as a chaperon for N. Both the N and P proteins are enriched in intrinsically disordered regions (IDRs), i.e. regions devoid of stable secondary and tertiary structure. N possesses a C-terminal IDR (NTAIL), while P consists of a large, intrinsically disordered N-terminal domain (NTD) and a C-terminal domain (CTD) encompassing alternating disordered and ordered regions. The V and W proteins, two non-structural proteins that are encoded by the P gene via a mechanism of co-transcriptional edition of the P mRNA, are prevalently disordered too, sharing with P the disordered NTD. They are key players in the evasion of the host antiviral response and were shown to phase separate and to form amyloid-like fibrils in vitro. In this review, we summarize the available information on IDRs within the N, P, V and W proteins from these three model paramyxoviruses and describe their molecular partnership. We discuss the functional benefit of disorder to virus replication in light of the critical role of IDRs in affording promiscuity, multifunctionality, fine regulation of interaction strength, scaffolding functions and in promoting liquid-liquid phase separation and fibrillation.


Subject(s)
Hendra Virus , Measles virus , Nipah Virus , Virus Replication , Hendra Virus/genetics , Hendra Virus/physiology , Nucleoproteins/chemistry , Nucleoproteins/genetics , RNA , Measles virus/genetics , Measles virus/physiology , Nipah Virus/genetics , Nipah Virus/physiology
3.
Int J Mol Sci ; 23(2)2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35055108

ABSTRACT

Henipaviruses are severe human pathogens within the Paramyxoviridae family. Beyond the P protein, the Henipavirus P gene also encodes the V and W proteins which share with P their N-terminal, intrinsically disordered domain (NTD) and possess a unique C-terminal domain. Henipavirus W proteins antagonize interferon (IFN) signaling through NTD-mediated binding to STAT1 and STAT4, and prevent type I IFN expression and production of chemokines. Structural and molecular information on Henipavirus W proteins is lacking. By combining various bioinformatic approaches, we herein show that the Henipaviruses W proteins are predicted to be prevalently disordered and yet to contain short order-prone segments. Using limited proteolysis, differential scanning fluorimetry, analytical size exclusion chromatography, far-UV circular dichroism and small-angle X-ray scattering, we experimentally confirmed their overall disordered nature. In addition, using Congo red and Thioflavin T binding assays and negative-staining transmission electron microscopy, we show that the W proteins phase separate to form amyloid-like fibrils. The present study provides an additional example, among the few reported so far, of a viral protein forming amyloid-like fibrils, therefore significantly contributing to enlarge our currently limited knowledge of viral amyloids. In light of the critical role of the Henipavirus W proteins in evading the host innate immune response and of the functional role of phase separation in biology, these studies provide a conceptual asset to further investigate the functional impact of the phase separation abilities of the W proteins.


Subject(s)
Amyloid/metabolism , Henipavirus/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , Benzothiazoles/metabolism , Circular Dichroism , Computer Simulation , Congo Red/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Models, Molecular , Protein Domains , Proteolysis , Scattering, Small Angle , X-Ray Diffraction
4.
Int J Mol Sci ; 24(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36613842

ABSTRACT

The Nipah and Hendra viruses (NiV and HeV) are biosafety level 4 human pathogens classified within the Henipavirus genus of the Paramyxoviridae family. In both NiV and HeV, the gene encoding the Phosphoprotein (P protein), an essential polymerase cofactor, also encodes the V and W proteins. These three proteins, which share an intrinsically disordered N-terminal domain (NTD) and have unique C-terminal domains (CTD), are all known to counteract the host innate immune response, with V and W acting by either counteracting or inhibiting Interferon (IFN) signaling. Recently, the ability of a short region within the shared NTD (i.e., PNT3) to form amyloid-like structures was reported. Here, we evaluated the relevance of each of three contiguous tyrosine residues located in a previously identified amyloidogenic motif (EYYY) within HeV PNT3 to the fibrillation process. Our results indicate that removal of a single tyrosine in this motif significantly decreases the ability to form fibrils independently of position, mainly affecting the elongation phase. In addition, we show that the C-terminal half of PNT3 has an inhibitory effect on fibril formation that may act as a molecular shield and could thus be a key domain in the regulation of PNT3 fibrillation. Finally, the kinetics of fibril formation for the two PNT3 variants with the highest and the lowest fibrillation propensity were studied by Taylor Dispersion Analysis (TDA). The results herein presented shed light onto the molecular mechanisms involved in fibril formation.


Subject(s)
Hendra Virus , Henipavirus Infections , Nipah Virus , Humans , Hendra Virus/genetics , Interferons/metabolism , Immunity, Innate
5.
NAR Cancer ; 3(1): zcaa043, 2021 Mar.
Article in English | MEDLINE | ID: mdl-34316696

ABSTRACT

Genome instability is a characteristic enabling factor for carcinogenesis. HelQ helicase is a component of human DNA maintenance systems that prevent or reverse genome instability arising during DNA replication. Here, we provide details of the molecular mechanisms that underpin HelQ function-its recruitment onto ssDNA through interaction with replication protein A (RPA), and subsequent translocation of HelQ along ssDNA. We describe for the first time a functional role for the non-catalytic N-terminal region of HelQ, by identifying and characterizing its PWI-like domain. We present evidence that this domain of HelQ mediates interaction with RPA that orchestrates loading of the helicase domains onto ssDNA. Once HelQ is loaded onto the ssDNA, ATP-Mg2+ binding in the catalytic site activates the helicase core and triggers translocation along ssDNA as a dimer. Furthermore, we identify HelQ-ssDNA interactions that are critical for the translocation mechanism. Our data are novel and detailed insights into the mechanisms of HelQ function relevant for understanding how human cells avoid genome instability provoking cancers, and also how cells can gain resistance to treatments that rely on DNA crosslinking agents.

6.
Nucleic Acids Res ; 48(6): 2830-2840, 2020 04 06.
Article in English | MEDLINE | ID: mdl-32052020

ABSTRACT

The determination of distances between specific points in nucleic acids is essential to understanding their behaviour at the molecular level. The ability to measure distances of 2-10 nm is particularly important: deformations arising from protein binding commonly fall within this range, but the reliable measurement of such distances for a conformational ensemble remains a significant challenge. Using several techniques, we show that electron paramagnetic resonance (EPR) spectroscopy of oligonucleotides spin-labelled with triazole-appended nitroxides at the 2' position offers a robust and minimally perturbing tool for obtaining such measurements. For two nitroxides, we present results from EPR spectroscopy, X-ray crystal structures of B-form spin-labelled DNA duplexes, molecular dynamics simulations and nuclear magnetic resonance spectroscopy. These four methods are mutually supportive, and pinpoint the locations of the spin labels on the duplexes. In doing so, this work establishes 2'-alkynyl nitroxide spin-labelling as a minimally perturbing method for probing DNA conformation.


Subject(s)
DNA/chemistry , Spin Labels , Base Sequence , Crystallography, X-Ray , DNA/chemical synthesis , Electron Spin Resonance Spectroscopy , Magnetic Resonance Spectroscopy , Molecular Dynamics Simulation
7.
Chem Commun (Camb) ; 55(78): 11671-11674, 2019 Sep 26.
Article in English | MEDLINE | ID: mdl-31497827

ABSTRACT

We report the design and optimisation of novel oligonucleotide substrates for a sensitive fluorescence assay for high-throughput screening and functional studies of the DNA repair enzyme, XPF-ERCC1, with a view to accelerating inhibitor and drug discovery.


Subject(s)
DNA Repair , DNA-Binding Proteins/metabolism , Endonucleases/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Dimerization , Endonucleases/chemistry , Endonucleases/genetics , Humans , Oligonucleotides/chemistry , Oligonucleotides/metabolism , Substrate Specificity , Temperature
8.
Sci Rep ; 7(1): 16869, 2017 12 04.
Article in English | MEDLINE | ID: mdl-29203900

ABSTRACT

Preventing the protein-protein interaction of the cellular chromatin binding protein Lens Epithelium-Derived Growth Factor (LEDGF) and human immunodeficiency virus (HIV) integrase is an important possible strategy for anti-viral treatment for AIDS. We have used Intracellular Antibody Capture technology to isolate a single VH antibody domain that binds to LEDGF. The crystal structure of the LEDGF-VH complex reveals that the single domain antibody mimics the effect of binding of HIV integrase to LEDGF which is crucial for HIV propagation. CD4-expressing T cell lines were constructed to constitutively express the LEDGF-binding VH and these cells showed interference with HIV viral replication, assayed by virus capsid protein p24 production. Therefore, pre-conditioning cells to express antibody fragments confers effective intracellular immunization for preventing chronic viral replication and can be a way to prevent HIV spread in infected patients. This raises the prospect that intracellular immunization strategies that focus on cellular components of viral integrase protein interactions can be used to combat the problems associated with latent HIV virus re-emergence in patients. New genome editing development, such as using CRISPR/cas9, offer the prospect intracellularly immunized T cells in HIV+ patients.


Subject(s)
HIV Infections/pathology , HIV Integrase/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Single-Domain Antibodies/immunology , Amino Acid Sequence , Animals , Binding Sites , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , Crystallography, X-Ray , HIV Core Protein p24/metabolism , HIV Infections/immunology , HIV Integrase/chemistry , Humans , Intercellular Signaling Peptides and Proteins/chemistry , Jurkat Cells , Mice , Molecular Dynamics Simulation , Protein Binding , Sequence Alignment , Single-Domain Antibodies/chemistry , Two-Hybrid System Techniques , Virus Replication
9.
Nat Commun ; 8(1): 1436, 2017 11 10.
Article in English | MEDLINE | ID: mdl-29127347

ABSTRACT

Archaeal viruses have evolved to infect hosts often thriving in extreme conditions such as high temperatures. However, there is a paucity of information on archaeal virion structures, genome packaging, and determinants of temperature resistance. The rod-shaped virus APBV1 (Aeropyrum pernix bacilliform virus 1) is among the most thermostable viruses known; it infects a hyperthermophile Aeropyrum pernix, which grows optimally at 90 °C. Here we report the structure of APBV1, determined by cryo-electron microscopy at near-atomic resolution. Tight packing of the major virion glycoprotein (VP1) is ensured by extended hydrophobic interfaces, and likely contributes to the extreme thermostability of the helical capsid. The double-stranded DNA is tightly packed in the capsid as a left-handed superhelix and held in place by the interactions with positively charged residues of VP1. The assembly is closed by specific capping structures at either end, which we propose to play a role in DNA packing and delivery.


Subject(s)
Aeropyrum/virology , Archaeal Viruses/genetics , Archaeal Viruses/physiology , Genome, Viral , Archaeal Viruses/ultrastructure , Cryoelectron Microscopy , DNA, Superhelical/chemistry , DNA, Superhelical/genetics , DNA, Viral/chemistry , DNA, Viral/genetics , Glycosylation , Hydrophobic and Hydrophilic Interactions , Imaging, Three-Dimensional , Models, Molecular , Protein Subunits , Viral Structural Proteins/chemistry , Viral Structural Proteins/genetics , Virus Assembly/genetics
10.
EMBO J ; 36(14): 2047-2060, 2017 07 14.
Article in English | MEDLINE | ID: mdl-28607004

ABSTRACT

During replication-coupled DNA interstrand crosslink (ICL) repair, the XPF-ERCC1 endonuclease is required for the incisions that release, or "unhook", ICLs, but the mechanism of ICL unhooking remains largely unknown. Incisions are triggered when the nascent leading strand of a replication fork strikes the ICL Here, we report that while purified XPF-ERCC1 incises simple ICL-containing model replication fork structures, the presence of a nascent leading strand, modelling the effects of replication arrest, inhibits this activity. Strikingly, the addition of the single-stranded DNA (ssDNA)-binding replication protein A (RPA) selectively restores XPF-ERCC1 endonuclease activity on this structure. The 5'-3' exonuclease SNM1A can load from the XPF-ERCC1-RPA-induced incisions and digest past the crosslink to quantitatively complete the unhooking reaction. We postulate that these collaborative activities of XPF-ERCC1, RPA and SNM1A might explain how ICL unhooking is achieved in vivo.


Subject(s)
DNA Repair , DNA-Binding Proteins/metabolism , Endonucleases/metabolism , Exodeoxyribonucleases/metabolism , Replication Protein A/metabolism , Cell Cycle Proteins , Humans , Models, Biological
11.
Nat Struct Mol Biol ; 24(6): 544-552, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28504696

ABSTRACT

The mechanism by which the recently identified DNA modification 5-formylcytosine (fC) is recognized by epigenetic writer and reader proteins is not known. Recently, an unusual DNA structure, F-DNA, has been proposed as the basis for enzyme recognition of clusters of fC. We used NMR and X-ray crystallography to compare several modified DNA duplexes with unmodified analogs and found that in the crystal state the duplexes all belong to the A family, whereas in solution they are all members of the B family. We found that, contrary to previous findings, fC does not significantly affect the structure of DNA, although there are modest local differences at the modification sites. Hence, global conformation changes are unlikely to account for the recognition of this modified base, and our structural data favor a mechanism that operates at base-pair resolution for the recognition of fC by epigenome-modifying enzymes.


Subject(s)
Cytosine/analogs & derivatives , DNA/chemistry , DNA/metabolism , Nucleic Acid Conformation , Crystallography, X-Ray , Cytosine/metabolism , Magnetic Resonance Spectroscopy
12.
J Biol Chem ; 287(40): 33607-14, 2012 Sep 28.
Article in English | MEDLINE | ID: mdl-22869371

ABSTRACT

Clostridium botulinum neurotoxin type A (BoNT/A) is one of the most potent toxins for humans and a major biothreat agent. Despite intense chemical efforts over the past 10 years to develop inhibitors of its catalytic domain (catBoNT/A), highly potent and selective inhibitors are still lacking. Recently, small inhibitors were reported to covalently modify catBoNT/A by targeting Cys(165), a residue located in the enzyme active site just above the catalytic zinc ion. However, no direct proof of Cys(165) modification was reported, and the poor accessibility of this residue in the x-ray structure of catBoNT/A raises concerns about this proposal. To clarify this issue, the functional role of Cys(165) was first assessed through a combination of site-directed mutagenesis and structural studies. These data suggested that Cys(165) is more involved in enzyme catalysis rather than in structural property. Then by peptide mass fingerprinting and x-ray crystallography, we demonstrated that a small compound containing a sulfonyl group acts as inhibitor of catBoNT/A through covalent modification of Cys(165). The crystal structure of this covalent complex offers a structural framework for developing more potent covalent inhibitors catBoNT/A. Other zinc metalloproteases can be founded in the protein database with a cysteine at a similar location, some expressed by major human pathogens; thus this work should find broader applications for developing covalent inhibitors.


Subject(s)
Botulinum Toxins, Type A/antagonists & inhibitors , Clostridium botulinum/metabolism , Cysteine/chemistry , Catalytic Domain , Chemistry, Pharmaceutical/methods , Crystallography, X-Ray/methods , Drug Design , Enzyme Inhibitors/pharmacology , Humans , Kinetics , Mutagenesis, Site-Directed , Peptide Hydrolases/chemistry , Peptides/chemistry , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Synaptosomal-Associated Protein 25/chemistry , Zinc/chemistry
13.
Structure ; 19(1): 90-100, 2011 Jan 12.
Article in English | MEDLINE | ID: mdl-21220119

ABSTRACT

RNA polymerases are essential enzymes which transcribe DNA into RNA. Here, we obtain mass spectra of the cellular forms of apo and holo eukaryotic RNA polymerase I and III, defining their composition under different solution conditions. By recombinant expression of subunits within the initiation heterotrimer of Pol III, we derive an interaction network and couple this data with ion mobility data to define topological restraints. Our data agree with available structural information and homology modeling and are generally consistent with yeast two hybrid data. Unexpectedly, elongation complexes of both Pol I and III destabilize the assemblies compared with their apo counterparts. Increasing the pH and ionic strength of apo and holo forms of Pol I and Pol III leads to formation of at least ten stable subcomplexes for both enzymes. Uniquely for Pol III many subcomplexes contain only one of the two largest catalytic subunits. We speculate that these stable subcomplexes represent putative intermediates in assembly pathways.


Subject(s)
RNA Polymerase III/chemistry , RNA Polymerase I/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/enzymology , Apoenzymes/chemistry , Polydeoxyribonucleotides/chemistry , Protein Multimerization/drug effects , Protein Stability , Protein Structure, Quaternary , Protein Structure, Tertiary , Spectrometry, Mass, Electrospray Ionization/methods
14.
J Mol Biol ; 400(1): 71-81, 2010 Jul 02.
Article in English | MEDLINE | ID: mdl-20450920

ABSTRACT

TBX5, a member of the T-box transcription factor family, plays an important role in heart and limb development. More than 60 single point or deletion mutations of human TBX5 are associated with Holt-Oram syndrome that manifests itself as heart and limb malformations in 1 out of 100,000 live births. The majority of these mutations are located in the TBX5 T-box domain. We solved the crystal structures of the human TBX5 T-box domain in its DNA-unbound form and in complex with a natural DNA target site allowing for the first time the comparison between unbound and DNA-bound forms. Our analysis identifies a 3(10)-helix at the C-terminus of the T-box domain as an inducible recognition element, critically required for the interaction with DNA, as it only forms upon DNA binding and is unstructured in the DNA-unbound form. Using circular dichroism, we characterized the thermal stability of six TBX5 mutants containing single point mutations in the T-box domain (M74V, G80R, W121G, G169R, T223M, and R237W) and compared them with wild-type protein. Mutants G80R and W121G show drastically reduced thermal stability, while the other mutants only show a marginal stability decrease. For all TBX5 mutants, binding affinities to specific and nonspecific DNA sequences were determined using isothermal titration calorimetry. All TBX5 mutants show reduced binding affinities to a specific DNA target site, although to various degrees. Interestingly, all tested TBX5 mutants differ in their ability to bind unspecific DNA, indicating that both sequence-specific and unspecific binding might contribute to the misregulation of target gene expression.


Subject(s)
DNA/chemistry , DNA/metabolism , Protein Structure, Tertiary , T-Box Domain Proteins/chemistry , T-Box Domain Proteins/metabolism , Abnormalities, Multiple/genetics , Abnormalities, Multiple/metabolism , Amino Acid Sequence , Animals , Base Sequence , Circular Dichroism , DNA/genetics , Fetal Proteins/chemistry , Fetal Proteins/genetics , Fetal Proteins/metabolism , Heart Defects, Congenital/genetics , Heart Defects, Congenital/metabolism , Humans , Limb Deformities, Congenital/genetics , Limb Deformities, Congenital/metabolism , Models, Molecular , Molecular Sequence Data , Nucleic Acid Conformation , Point Mutation , Sequence Alignment , T-Box Domain Proteins/genetics
15.
EMBO J ; 27(19): 2628-37, 2008 Oct 08.
Article in English | MEDLINE | ID: mdl-18784751

ABSTRACT

The LEAFY (LFY) protein is a key regulator of flower development in angiosperms. Its gradually increased expression governs the sharp floral transition, and LFY subsequently controls the patterning of flower meristems by inducing the expression of floral homeotic genes. Despite a wealth of genetic data, how LFY functions at the molecular level is poorly understood. Here, we report crystal structures for the DNA-binding domain of Arabidopsis thaliana LFY bound to two target promoter elements. LFY adopts a novel seven-helix fold that binds DNA as a cooperative dimer, forming base-specific contacts in both the major and minor grooves. Cooperativity is mediated by two basic residues and plausibly accounts for LFY's effectiveness in triggering sharp developmental transitions. Our structure reveals an unexpected similarity between LFY and helix-turn-helix proteins, including homeodomain proteins known to regulate morphogenesis in higher eukaryotes. The appearance of flowering plants has been linked to the molecular evolution of LFY. Our study provides a unique framework to elucidate the molecular mechanisms underlying floral development and the evolutionary history of flowering plants.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Flowers/physiology , Helix-Turn-Helix Motifs , Transcription Factors/chemistry , Transcription Factors/metabolism , Amino Acid Sequence , Animals , Arabidopsis/anatomy & histology , Arabidopsis Proteins/genetics , Crystallography, X-Ray , DNA/metabolism , Dimerization , Macromolecular Substances/chemistry , Macromolecular Substances/metabolism , Models, Molecular , Molecular Sequence Data , Nucleic Acid Conformation , Promoter Regions, Genetic , Protein Binding , Protein Conformation , Sequence Alignment , Sequence Homology, Amino Acid , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...