Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Artif Organs ; 44(4): 419-427, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31660616

ABSTRACT

Passively levitated ventricular assist devices (VADs) are vulnerable to impeller-housing contact and could benefit from surface coatings that improve wear resistance. Such coatings can be manufactured by plasma electrolytic oxidation (PEO), but their suitability for blood-contact applications needs further investigation. We therefore compared blood-surface interactions of polished titanium grade 5 (Ti Gr 5), as a general VAD reference material, uncoated ground titanium grade 4 (Ti Gr 4) and two commercially available PEO coatings on Ti Gr 4. In n = 4 static platelet adhesion tests, material samples were incubated with platelet-rich plasma (PRP) and consecutively analyzed for adhesive platelets by immunofluorescence microscopy. Additionally, PRP supernatant of incubated material samples was analyzed for changes in antithrombin III and fibrinogen concentrations by turbodimetry and enzyme-linked immunosorbent assay, respectively. We could not find any significant differences between the materials in the analyzed hemocompatibility markers (P > .05). Thus, we conclude that PEO coatings might offer a similar hemocompatibility to that of polished Ti Gr 5 and uncoated Ti Gr 4. Nevertheless, future studies should investigate blood-surface interactions of PEO coatings under realistic VAD-related flow conditions to better evaluate their potential for VAD applications.


Subject(s)
Blood Coagulation , Ceramics , Heart-Assist Devices , Platelet Adhesiveness , Titanium , Electrochemical Techniques , Feasibility Studies , Humans , Materials Testing
2.
Acta Biomater ; 23: 354-363, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26073090

ABSTRACT

Magnesium (Mg) is a promising biomaterial for degradable implant applications that has been extensively studied in vitro and in vivo in recent years. In this study, we developed a procedure that allows an optimized and uniform in vitro assessment of the cytocompatibility of Mg-based materials while respecting the standard protocol DIN EN ISO 10993-5:2009. The mouse fibroblast line L-929 was chosen as the preferred assay cell line and MEM supplemented with 10% FCS, penicillin/streptomycin and 4mM l-glutamine as the favored assay medium. The procedure consists of (1) an indirect assessment of effects of soluble Mg corrosion products in material extracts and (2) a direct assessment of the surface compatibility in terms of cell attachment and cytotoxicity originating from active corrosion processes. The indirect assessment allows the quantification of cell-proliferation (BrdU-assay), viability (XTT-assay) as well as cytotoxicity (LDH-assay) of the mouse fibroblasts incubated with material extracts. Direct assessment visualizes cells attached to the test materials by means of live-dead staining. The colorimetric assays and the visual evaluation complement each other and the combination of both provides an optimized and simple procedure for assessing the cytocompatibility of Mg-based biomaterials in vitro.


Subject(s)
Algorithms , Biocompatible Materials/toxicity , Fibroblasts/drug effects , Magnesium/toxicity , Materials Testing/standards , Toxicity Tests/standards , Animals , Biological Assay/methods , Biological Assay/standards , Cell Line , Cell Survival/drug effects , Fibroblasts/pathology , Guidelines as Topic , In Vitro Techniques , Internationality , Materials Testing/methods , Mice , Toxicity Tests/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...