Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 117(4): 1148-1164, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37967146

ABSTRACT

Nitrogen (N) is an essential factor for limiting crop yields, and cultivation of crops with low nitrogen-use efficiency (NUE) exhibits increasing environmental and ecological risks. Hence, it is crucial to mine valuable NUE improvement genes, which is very important to develop and breed new crop varieties with high NUE in sustainable agriculture system. Quantitative trait locus (QTL) and genome-wide association study (GWAS) analysis are the most common methods for dissecting genetic variations underlying complex traits. In addition, with the advancement of biotechnology, multi-omics technologies can be used to accelerate the process of exploring genetic variations. In this study, we integrate the substantial data of QTLs, quantitative trait nucleotides (QTNs) from GWAS, and multi-omics data including transcriptome, proteome, and metabolome and further analyze their interactions to predict some NUE-related candidate genes. We also provide the genic resources for NUE improvement among maize, rice, wheat, and sorghum by homologous alignment and collinearity analysis. Furthermore, we propose to utilize the knowledge gained from classical cases to provide the frameworks for improving NUE and breeding N-efficient varieties through integrated genomics, systems biology, and modern breeding technologies.


Subject(s)
Genome-Wide Association Study , Zea mays , Zea mays/genetics , Nitrogen , Plant Breeding , Crops, Agricultural/genetics
2.
J Adv Res ; 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37739122

ABSTRACT

BACKGROUND: Cereal crops are a primary energy source for humans. Grain size and weight affect both evolutionary fitness and grain yield of cereals. Although studies on gene mining and molecular mechanisms controlling grain size and weight are constantly emerging in cereal crops, only a few systematic reviews on the underlying molecular mechanisms and their breeding applications are available so far. AIM OF REVIEW: This review provides a general state-of-the-art overview of molecular mechanisms and targeted strategies for improving grain size and weight of cereals as well as insights for future yield-improving biotechnology-assisted breeding. KEY SCIENTIFIC CONCEPTS OF REVIEW: In this review, the evolution of research on grain size and weight over the last 20 years is traced based on a bibliometric analysis of 1158 publications and the main signaling pathways and transcriptional factors involved are summarized. In addition, the roles of post-transcriptional regulation and photosynthetic product accumulation affecting grain size and weight in maize and rice are outlined. State-of-the-art strategies for discovering novel genes related to grain size and weight in maize and other cereal crops as well as advanced breeding biotechnology strategies being used for improving yield including marker-assisted selection, genomic selection, transgenic breeding, and genome editing are also discussed.

3.
Plant Cell Rep ; 42(9): 1395-1417, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37311877

ABSTRACT

KEY MESSAGE: This review summarizes the molecular basis and emerging applications of developmental regulatory genes and nanoparticles in plant transformation and discusses strategies to overcome the obstacles of genotype dependency in plant transformation. Plant transformation is an important tool for plant research and biotechnology-based crop breeding. However, Plant transformation and regeneration are highly dependent on species and genotype. Plant regeneration is a process of generating a complete individual plant from a single somatic cell, which involves somatic embryogenesis, root and shoot organogeneses. Over the past 40 years, significant advances have been made in understanding molecular mechanisms of embryogenesis and organogenesis, revealing many developmental regulatory genes critical for plant regeneration. Recent studies showed that manipulating some developmental regulatory genes promotes the genotype-independent transformation of several plant species. Besides, nanoparticles penetrate plant cell wall without external forces and protect cargoes from degradation, making them promising materials for exogenous biomolecule delivery. In addition, manipulation of developmental regulatory genes or application of nanoparticles could also bypass the tissue culture process, paving the way for efficient plant transformation. Applications of developmental regulatory genes and nanoparticles are emerging in the genetic transformation of different plant species. In this article, we review the molecular basis and applications of developmental regulatory genes and nanoparticles in plant transformation and discuss how to further promote genotype-independent plant transformation.


Subject(s)
Biotechnology , Plant Breeding , Plants, Genetically Modified/genetics , Genes, Regulator , Genotype , Plant Somatic Embryogenesis Techniques
4.
Nutrients ; 15(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36678244

ABSTRACT

Food security and hidden hunger are two worldwide serious and complex challenges nowadays. As one of the newly emerged technologies, gene editing technology and its application to crop improvement offers the possibility to relieve the pressure of food security and nutrient needs. In this paper, we analyzed the research status of quality improvement based on gene editing using four major crops, including rice, soybean, maize, and wheat, through a bibliometric analysis. The research hotspots now focus on the regulatory network of related traits, quite different from the technical improvements to gene editing in the early stage, while the trends in deregulation in gene-edited crops have accelerated related research. Then, we mined quality-related genes that can be edited to develop functional crops, including 16 genes related to starch, 15 to lipids, 14 to proteins, and 15 to other functional components. These findings will provide useful reference information and gene resources for the improvement of functional crops and nutritional quality based on gene editing technology.


Subject(s)
Crops, Agricultural , Gene Editing , Crops, Agricultural/genetics , Nutritive Value , Technology , Bibliometrics
5.
Cells ; 11(17)2022 08 29.
Article in English | MEDLINE | ID: mdl-36078090

ABSTRACT

Gene editing (GE) has become one of the mainstream bioengineering technologies over the past two decades, mainly fueled by the rapid development of the CRISPR/Cas system since 2012. To date, plenty of articles related to the progress and applications of GE have been published globally, but the objective, quantitative and comprehensive investigations of them are relatively few. Here, 13,980 research articles and reviews published since 1999 were collected by using GE-related queries in the Web of Science. We used bibliometric analysis to investigate the competitiveness and cooperation of leading countries, influential affiliations, and prolific authors. Text clustering methods were used to assess technical trends and research hotspots dynamically. The global application status and regulatory framework were also summarized. This analysis illustrates the bottleneck of the GE innovation and provides insights into the future trajectory of development and application of the technology in various fields, which will be helpful for the popularization of gene editing technology.


Subject(s)
Bibliometrics , Gene Editing , CRISPR-Cas Systems/genetics , Gene Editing/methods , Publications
SELECTION OF CITATIONS
SEARCH DETAIL
...