Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(9): e19540, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809713

ABSTRACT

FOXG1, a transcriptional factor belonging to the Forkhead Box (Fox) superfamily, is highly expressed in the brain tissue during brain development and plays an important role in cellular proliferation. Recently, FOXG1 was reported to play important roles in oncogenesis, wherein its abnormal expression regulates tumor cell proliferation. However, the expression and role of FOXG1 in lung cancer remain largely unknown. This study investigated the clinical significance, expression, and role of FOXG1 in lung cancer. We found that FOXG1 was highly expressed in lung cancer tissues. MTT, CCK-8 and colony formation assays showed that FOXG1 overexpression could enhance the proliferation of A549 lung cancer cells. Flow cytometry analysis revealed that FOXG1 promoted the cell cycle and suppressed cell apoptosis. Additionally, the expression levels of PTEN, phosphorylated AKT, mTOR, p53, and Bax were significantly altered in response to changes in FOXG1 expression, indicating that FOXG1 regulated the PI3K pathway. Furthermore, in the xenograft mouse model, the upregulated FOXG1 expression strongly promoted tumor growth. In conclusion, these results suggested that FOXG1 was a critical regulator of the proliferation of lung cancer cells and enhanced tumor growth in vivo.

2.
Clin Exp Hypertens ; 45(1): 2206066, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37154151

ABSTRACT

OBJECTIVE: Hypertension is one of the leading causes of human death and disability. MTHFR and MTRR regulate folate metabolism and are closely linked to hypertension, although the relationship is inconsistent among different ethnic groups. The present study aims to investigate the effects of MTHFR C677T (rs1801133), MTHFR A1298C (rs1801131), and MTRR A66G (rs1801394) polymorphisms on hypertension susceptibility in the Bai nationality of the Yunnan Province, China. METHODS: This case-control study included 373 hypertensive patients and 240 healthy controls from the Chinese Bai population. The genotyping of MTHFR and MTRR gene polymorphisms was carried out by using the KASP method. The effects of genetic variations of MTHFR and MTRR genes on hypertension risk were evaluated with odds ratios (OR) and 95% confidence intervals (95% CI). RESULTS: The present study revealed that the CT and TT genotypes and T allele of MTHFR C677T locus were considerably associated with an increased risk of hypertension. In addition, MTHFR A1298C locus CC genotype could significantly increase the hypertension risk. The T-A and C-C haplotypes of MTHFR C677T and MTHFR A1298C could increase the risk of hypertension. Further stratified analysis by risk rank of folate metabolism indicated that people with poor utilization of folic acid were more prone to develop hypertension. In the hypertension group, the MTHFR C677T polymorphism was significantly associated with fasting blood glucose, fructosamine, apolipoprotein A1, homocysteine, superoxide dismutase, and malondialdehyde levels. CONCLUSION: Our study suggested that genetic variations of MTHFR C677T and MTHFR A1298C were significantly associated with susceptibility to hypertension in the Bai population from Yunnan, China.


Subject(s)
Genetic Predisposition to Disease , Hypertension , Humans , Case-Control Studies , China/epidemiology , Folic Acid/metabolism , Genotype , Hypertension/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Polymorphism, Genetic , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...