Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38891490

ABSTRACT

The development of smart protective clothing will help detect injuries from contact sports, traffic collisions, and other accidents. The combination of ecoflex, spacer fabric, and graphene-based aerogel provides a multifunctional composite. It shows a strain sensitivity of 17.71 at the strain range of 40~55%, a pressure sensitivity of 0.125 kPa-1 at the pressure range of 0~15 kPa, and a temperature sensitivity of -0.648 °C-1. After 50 impact tests, its protection coefficient only dropped from 60% to 55%. Additionally, it shows thermal insulation properties. The compression and impact process results of finite element numerical simulation analysis are in good agreement with the experimental results. The ecoflex/aerogel/spacer fabric sensor exhibits a simple structure, large pressure strain, high sensitivity, flexibility, and ease of fabrication, making it a candidate for smart protective clothing resistant to impact loads.

2.
J Agric Food Chem ; 72(23): 13262-13272, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38775286

ABSTRACT

Umami peptides are known for enhancing the taste experience by binding to oral umami T1R1 and T1R3 receptors. Among them, small peptides (composed of 2-4 amino acids) constitute nearly 40% of reported umami peptides. Given the diversity in amino acids and peptide sequences, umami small peptides possess tremendous untapped potential. By investigating 168,400 small peptides, we screened candidates binding to T1R1/T1R3 through molecular docking and molecular dynamics simulations, explored bonding types, amino acid characteristics, preferred binding sites, etc. Utilizing three-dimensional molecular descriptors, bonding information, and a back-propagation neural network, we developed a predictive model with 90.3% accuracy, identifying 24,539 potential umami peptides. Clustering revealed three classes with distinct logP (-2.66 ± 1.02, -3.52 ± 0.93, -2.44 ± 1.23) and asphericity (0.28 ± 0.12, 0.26 ± 0.11, 0.25 ± 0.11), indicating significant differences in shape and hydrophobicity (P < 0.05) among potential umami peptides binding to T1R1/T1R3. Following clustering, nine representative peptides (CQ, DP, NN, CSQ, DMC, TGS, DATE, HANR, and STAN) were synthesized and confirmed to possess umami taste through sensory evaluations and electronic tongue analyses. In summary, this study provides insights into exploring small peptide interactions with umami receptors, advancing umami peptide prediction models.


Subject(s)
Molecular Docking Simulation , Peptides , Receptors, G-Protein-Coupled , Taste , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Peptides/chemistry , Peptides/metabolism , Humans , Binding Sites , Molecular Dynamics Simulation , Protein Binding , Amino Acid Sequence
3.
Arch Med Res ; 53(3): 231-239, 2022 04.
Article in English | MEDLINE | ID: mdl-34906389

ABSTRACT

BACKGROUND AND AIMS: Adipose tissue play an important role in the regulation of energy balance and homeostasis. Two main types of adipose tissue are found in mammals, white adipose tissue (WAT) and brown adipose tissue (BAT). WAT acts as energy storage in the form of triglycerides; excess WAT is a cause of overweight and obesity. Conversely, BAT works by dissipating energy as heat, which may facilitate the suppression of obesity and play a vital role in maintaining core body temperature. Recently a new type of adipocyte has been introduced: beige or brite adipocytes. This adipocyte has morphological and functional similarities to BAT but, developmentally, it is more closely related to WAT. In response to appropriate stimuli, WAT deposits can take on characteristics like BAT and act as beige or brite adipocyte, through a process called "browning." Browning has become a promising therapeutic target for obesity due to its fat-burning potential. METHODS: Searches were carried out using MEDLINE/PubMed, Scopus, and Web of Science. The in vivo and in vitro mechanisms of ginsenosides related to beige adipocytes were also included. RESULTS: In this review, we found a considerable number of articles suggesting that the anti-obesity action of ginsenosides might be related to WAT browning and discussed the possible mechanisms for this. CONCLUSION: Current evidence from the in vitro and in vivo studies strongly supports that ginsenosides may play a significant role in the browning of WAT. The browning effects of ginsenosides are associated with various signaling pathways, markers, and transcription factors. In conclusion, ginsenosides may help counteract obesity by promoting the browning of WAT.


Subject(s)
Ginsenosides , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Animals , Ginsenosides/metabolism , Mammals , Obesity/therapy , Thermogenesis
SELECTION OF CITATIONS
SEARCH DETAIL
...