Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Biol ; 271(2): 372-87, 2004 Jul 15.
Article in English | MEDLINE | ID: mdl-15223341

ABSTRACT

We present a stochastic cellular automaton model for the behavior of limb bud precartilage mesenchymal cells undergoing chondrogenic patterning. This "agent-oriented" model represents cells by points on a lattice that obey rules motivated by experimental findings. The "cells" follow these rules as autonomous agents, interacting with other cells and with the microenvironments cell activities produce. The rules include random cell motion, production and lateral deposition of a substrate adhesion molecule (SAM, corresponding to fibronectin), production and release of a diffusible growth factor ("activator," corresponding to TGF-beta) that stimulates production of the SAM, and another diffusible factor ("inhibitor") that suppresses the activity of the activator. We implemented the cellular automaton on a two-dimensional (2D) square lattice to emulate the quasi-2D micromass culture extensively used to study patterning in avian limb bud precartilage cells. We identified parameters that produce nodular patterns that resemble, in size and distribution, cell condensations in leg-cell cultures, thus establishing a correspondence between in vitro and in silico results. We then studied the in vitro and in silico micromass cultures experimentally. We altered the standard in vitro micromass culture by diluting the initial cell density, transiently exposing it to exogenous activator, suppressing the inhibitor, and constitutively activating fibronectin production. We altered the standard in silico micromass culture in each case by changing the corresponding parameter. In vitro and in silico experiments agreed well. We also used the model to test hypotheses for differences in the in vitro patterns of cells derived from chick embryo forelimb and hindlimb. We discuss the applicability of this model to limb development in vivo and to other organ development.


Subject(s)
Chondrogenesis/physiology , Epistasis, Genetic , Models, Biological , Algorithms , Animals , Cell Count , Cell Movement/physiology , Chick Embryo , Computer Simulation , Fibronectins/metabolism , Limb Buds/embryology , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/physiology , Stochastic Processes , Transfection , Transforming Growth Factor beta/antagonists & inhibitors , Transforming Growth Factor beta/metabolism
2.
Dev Biol ; 249(2): 270-82, 2002 Sep 15.
Article in English | MEDLINE | ID: mdl-12221006

ABSTRACT

The formation of cartilage elements in the developing vertebrate limb, where they serve as primordia for the appendicular skeleton, is preceded by the appearance of discrete cellular condensations. Control of the size and spacing of these condensations is a key aspect of skeletal pattern formation. Limb bud cell cultures grown in the absence of ectoderm formed continuous sheet-like masses of cartilage. With the inclusion of ectoderm, these cultures produced one or more cartilage nodules surrounded by zones of noncartilaginous mesenchyme. Ectodermal fibroblast growth factors (FGF2 and FGF8), but not a mesodermal FGF (FGF7), substituted for ectoderm in inhibiting chondrogenic gene expression, with some combinations of the two ectodermal factors leading to well-spaced cartilage nodules of relatively uniform size. Treatment of cultures with SU5402, an inhibitor FGF receptor tyrosine kinase activity, rendered FGFs ineffective in inducing perinodular inhibition. Inhibition of production of FGF receptor 2 (FGFR2) by transfection of wing and leg cell cultures with antisense oligodeoxynucleotides blocked appearance of ectoderm- or FGF-induced zones of perinodular inhibition of chondrogenesis and, when introduced into the limb buds of developing embryos, led to shorter, thicker, and fused cartilage elements. Because FGFR2 is expressed mainly at sites of precartilage condensation during limb development in vivo and in vitro, these results suggest that activation of FGFR2 by FGFs during development elicits a lateral inhibitor of chondrogenesis that limits the expansion of developing skeletal elements.


Subject(s)
Cartilage, Articular/embryology , Chick Embryo/physiology , Ectoderm/physiology , Fibroblast Growth Factors/pharmacology , Mesoderm/physiology , Morphogenesis/physiology , Protein-Tyrosine Kinases , Receptor Protein-Tyrosine Kinases/physiology , Receptors, Fibroblast Growth Factor/physiology , Animals , Cell Culture Techniques/methods , Cell Division , Extremities/embryology , Fibroblast Growth Factor 7 , Morphogenesis/drug effects , Receptor Protein-Tyrosine Kinases/drug effects , Receptor, Fibroblast Growth Factor, Type 1 , Receptor, Fibroblast Growth Factor, Type 2 , Receptor, Fibroblast Growth Factor, Type 3 , Receptors, Fibroblast Growth Factor/drug effects , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...