Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Res ; 33(7): 1154-1161, 2023 07.
Article in English | MEDLINE | ID: mdl-37558282

ABSTRACT

Minimizers are ubiquitously used in data structures and algorithms for efficient searching, mapping, and indexing of high-throughput DNA sequencing data. Minimizer schemes select a minimum k-mer in every L-long subsequence of the target sequence, where minimality is with respect to a predefined k-mer order. Commonly used minimizer orders select more k-mers than necessary and therefore provide limited improvement in runtime and memory usage of downstream analysis tasks. The recently introduced universal k-mer hitting sets produce minimizer orders with fewer selected k-mers. Generating compact universal k-mer hitting sets is currently infeasible for k > 13, and thus, they cannot help in the many applications that require minimizer orders for larger k Here, we close the gap of efficient minimizer orders for large values of k by introducing decycling-set-based minimizer orders: new minimizer orders based on minimum decycling sets. We show that in practice these new minimizer orders select a number of k-mers comparable to that of minimizer orders based on universal k-mer hitting sets and can also scale to a larger k Furthermore, we developed a method that computes the minimizers in a sequence on the fly without keeping the k-mers of a decycling set in memory. This enables the use of these minimizer orders for any value of k We expect the new orders to improve the runtime and memory usage of algorithms and data structures in high-throughput DNA sequencing analysis.


Subject(s)
Algorithms , Software , Sequence Analysis, DNA/methods , High-Throughput Nucleotide Sequencing/methods
2.
Bioinformatics ; 38(Suppl_2): ii56-ii61, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36124804

ABSTRACT

MOTIVATION: Bacteriophages and plasmids usually coexist with their host bacteria in microbial communities and play important roles in microbial evolution. Accurately identifying sequence contigs as phages, plasmids and bacterial chromosomes in mixed metagenomic assemblies is critical for further unraveling their functions. Many classification tools have been developed for identifying either phages or plasmids in metagenomic assemblies. However, only two classifiers, PPR-Meta and viralVerify, were proposed to simultaneously identify phages and plasmids in mixed metagenomic assemblies. Due to the very high fraction of chromosome contigs in the assemblies, both tools achieve high precision in the classification of chromosomes but perform poorly in classifying phages and plasmids. Short contigs in these assemblies are often wrongly classified or classified as uncertain. RESULTS: Here we present 3CAC, a new three-class classifier that improves the precision of phage and plasmid classification. 3CAC starts with an initial three-class classification generated by existing classifiers and improves the classification of short contigs and contigs with low confidence classification by using proximity in the assembly graph. Evaluation on simulated metagenomes and on real human gut microbiome samples showed that 3CAC outperformed PPR-Meta and viralVerify in both precision and recall, and increased F1-score by 10-60 percentage points. AVAILABILITY AND IMPLEMENTATION: The 3CAC software is available on https://github.com/Shamir-Lab/3CAC. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Bacteriophages , Metagenome , Bacteriophages/genetics , Humans , Metagenomics , Plasmids/genetics , Software
3.
IEEE/ACM Trans Comput Biol Bioinform ; 18(5): 1831-1840, 2021.
Article in English | MEDLINE | ID: mdl-31985437

ABSTRACT

Anti-inflammatory peptides (AIEs) have recently emerged as promising therapeutic agent for treatment of various inflammatory diseases, such as rheumatoid arthritis and Alzheimer's disease. Therefore, detecting the correlation between amino acid sequence and its anti-inflammatory property is of great importance for the discovery of new AIEs. To address this issue, we propose a novel prediction tool for accurate identification of peptides as anti-inflammatory epitopes or non anti-inflammatory epitopes. Most of all, we encode the original peptide sequence for better mining and exploring the information and patterns, based on the three feature representations as amino acid contact, position specific scoring matrix, physicochemical property. At the same time, we exploit several feature extraction models and utilize one feature selection model, in order to construct many base classifiers from various feature representations. More specifically, we develop an effective classification model, with which we can extract and learn a set of informative features from the ensemble classifier chain model with different group of base classifiers. Furthermore, in order to test the predictive power of our model, we conduct the comparative experiments on the leave-one-out cross-validation and the independent test. It shows that our novel predictor performs great accurate for identification of AIEs as well as existing outstanding prediction tools. Source codes are available at https://github.com/guofei-tju/Ensemble-classifier-chain-model.


Subject(s)
Anti-Inflammatory Agents/chemistry , Machine Learning , Peptides/chemistry , Sequence Analysis, Protein/methods , Algorithms , Amino Acid Sequence , Computational Biology , Drug Discovery , Models, Statistical
4.
Genome Res ; 28(6): 901-909, 2018 06.
Article in English | MEDLINE | ID: mdl-29735604

ABSTRACT

Although segmental duplications (SDs) represent hotbeds for genomic rearrangements and emergence of new genes, there are still no easy-to-use tools for identifying SDs. Moreover, while most previous studies focused on recently emerged SDs, detection of ancient SDs remains an open problem. We developed an SDquest algorithm for SD finding and applied it to analyzing SDs in human, gorilla, and mouse genomes. Our results demonstrate that previous studies missed many SDs in these genomes and show that SDs account for at least 6.05% of the human genome (version hg19), a 17% increase as compared to the previous estimate. Moreover, SDquest classified 6.42% of the latest GRCh38 version of the human genome as SDs, a large increase as compared to previous studies. We thus propose to re-evaluate evolution of SDs based on their accurate representation across multiple genomes. Toward this goal, we analyzed the complex mosaic structure of SDs and decomposed mosaic SDs into elementary SDs, a prerequisite for follow-up evolutionary analysis. We also introduced the concept of the breakpoint graph of mosaic SDs that revealed SD hotspots and suggested that some SDs may have originated from circular extrachromosomal DNA (ecDNA), not unlike ecDNA that contributes to accelerated evolution in cancer.


Subject(s)
Evolution, Molecular , Gorilla gorilla/genetics , Mammals/genetics , Segmental Duplications, Genomic/genetics , Animals , Genome, Human/genetics , Humans , Mice , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...