Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37961437

ABSTRACT

The DNA double-strand breaks that initiate meiotic recombination are formed by topoisomerase relative Spo11, supported by conserved auxiliary factors. Because high-resolution structural data are lacking, many questions remain about the architecture of Spo11 and its partners and how they engage with DNA. We report cryo-EM structures at up to 3.3 Å resolution of DNA-bound core complexes of Saccharomyces cerevisiae Spo11 with Rec102, Rec104, and Ski8. In these structures, monomeric core complexes make extensive contacts with the DNA backbone and with the recessed 3'-OH and first 5' overhanging nucleotide, definitively establishing the molecular determinants of DNA end-binding specificity and providing insight into DNA cleavage preferences in vivo. The structures of individual subunits and their interfaces, supported by functional data in yeast, provide insight into the role of metal ions in DNA binding and uncover unexpected structural variation in homologs of the Top6BL component of the core complex.

2.
Genes Dev ; 37(11-12): 518-534, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37442580

ABSTRACT

The DNA double-strand breaks (DSBs) that initiate meiotic recombination are formed by an evolutionarily conserved suite of factors that includes Rec114 and Mei4 (RM), which regulate DSB formation both spatially and temporally. In vivo, these proteins form large immunostaining foci that are integrated with higher-order chromosome structures. In vitro, they form a 2:1 heterotrimeric complex that binds cooperatively to DNA to form large, dynamic condensates. However, understanding of the atomic structures and dynamic DNA binding properties of RM complexes is lacking. Here, we report a structural model of a heterotrimeric complex of the C terminus of Rec114 with the N terminus of Mei4, supported by nuclear magnetic resonance experiments. This minimal complex, which lacks the predicted intrinsically disordered region of Rec114, is sufficient to bind DNA and form condensates. Single-molecule experiments reveal that the minimal complex can bridge two or more DNA duplexes and can generate force to condense DNA through long-range interactions. AlphaFold2 predicts similar structural models for RM orthologs across diverse taxa despite their low degree of sequence similarity. These findings provide insight into the conserved networks of protein-protein and protein-DNA interactions that enable condensate formation and promote formation of meiotic DSBs.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae Proteins/metabolism , Chromosomes/metabolism , Meiosis , DNA Breaks, Double-Stranded , DNA
3.
bioRxiv ; 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36711595

ABSTRACT

The DNA double-strand breaks (DSBs) that initiate meiotic recombination are formed by an evolutionarily conserved suite of factors that includes Rec114 and Mei4 (RM), which regulate DSB formation both spatially and temporally. In vivo , these proteins form large immunostaining foci that are integrated with higher order chromosome structures. In vitro , they form a 2:1 heterotrimeric complex that binds cooperatively to DNA to form large, dynamic condensates. However, understanding of the atomic structures and dynamic DNA binding properties of RM complexes is lacking. Here, we report a structural model of a heterotrimeric complex of the C-terminus of Rec114 with the N-terminus of Mei4, supported by nuclear magnetic resonance experiments. This minimal complex, which lacks the predicted intrinsically disordered region of Rec114, is sufficient to bind DNA and form condensates. Single-molecule experiments reveal that the minimal complex can bridge two or more DNA duplexes and can generate force to condense DNA through long-range interactions. AlphaFold2 predicts similar structural models for RM orthologs across diverse taxa despite their low degree of sequence similarity. These findings provide insight into the conserved networks of protein-protein and protein-DNA interactions that enable condensate formation and promote formation of meiotic DSBs.

4.
Nature ; 592(7852): 144-149, 2021 04.
Article in English | MEDLINE | ID: mdl-33731927

ABSTRACT

The accurate segregation of chromosomes during meiosis-which is critical for genome stability across sexual cycles-relies on homologous recombination initiated by DNA double-strand breaks (DSBs) made by the Spo11 protein1,2. The formation of DSBs is regulated and tied to the elaboration of large-scale chromosome structures3-5, but the protein assemblies that execute and control DNA breakage are poorly understood. Here we address this through the molecular characterization of Saccharomyces cerevisiae RMM (Rec114, Mei4 and Mer2) proteins-essential, conserved components of the DSB machinery2. Each subcomplex of Rec114-Mei4 (a 2:1 heterotrimer) or Mer2 (a coiled-coil-containing homotetramer) is monodispersed in solution, but they independently condense with DNA into reversible nucleoprotein clusters that share properties with phase-separated systems. Multivalent interactions drive this condensation. Mutations that weaken protein-DNA interactions strongly disrupt both condensate formation and DSBs in vivo, and thus these processes are highly correlated. In vitro, condensates fuse into mixed RMM clusters that further recruit Spo11 complexes. Our data show how the DSB machinery self-assembles on chromosome axes to create centres of DSB activity. We propose that multilayered control of Spo11 arises from the recruitment of regulatory components and modulation of the biophysical properties of the condensates.


Subject(s)
DNA Breaks, Double-Stranded , DNA, Fungal/metabolism , Meiosis , Nuclear Proteins/metabolism , Nucleoproteins/metabolism , Recombinases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae , DNA, Fungal/chemistry , Endodeoxyribonucleases/metabolism , Homologous Recombination , Nuclear Proteins/chemistry , Nucleoproteins/chemistry , Protein Binding , Protein Subunits/chemistry , Protein Subunits/metabolism , Recombinases/chemistry , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry
5.
Nat Struct Mol Biol ; 28(1): 92-102, 2021 01.
Article in English | MEDLINE | ID: mdl-33398171

ABSTRACT

Spo11, which makes DNA double-strand breaks (DSBs) that are essential for meiotic recombination, has long been recalcitrant to biochemical study. We provide molecular analysis of Saccharomyces cerevisiae Spo11 purified with partners Rec102, Rec104 and Ski8. Rec102 and Rec104 jointly resemble the B subunit of archaeal topoisomerase VI, with Rec104 occupying a position similar to the Top6B GHKL-type ATPase domain. Unexpectedly, the Spo11 complex is monomeric (1:1:1:1 stoichiometry), consistent with dimerization controlling DSB formation. Reconstitution of DNA binding reveals topoisomerase-like preferences for duplex-duplex junctions and bent DNA. Spo11 also binds noncovalently but with high affinity to DNA ends mimicking cleavage products, suggesting a mechanism to cap DSB ends. Mutations that reduce DNA binding in vitro attenuate DSB formation, alter DSB processing and reshape the DSB landscape in vivo. Our data reveal structural and functional similarities between the Spo11 core complex and Topo VI, but also highlight differences reflecting their distinct biological roles.


Subject(s)
DNA Breaks, Double-Stranded , Endodeoxyribonucleases/metabolism , Meiosis/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Archaeal Proteins/metabolism , DNA Topoisomerases, Type II/metabolism , DNA-Binding Proteins/metabolism , Endodeoxyribonucleases/genetics , Microscopy, Atomic Force , Mutation/genetics , Nucleic Acid Conformation , Recombinases/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...