Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Neurobiol ; 28(1): 104-118, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30853828

ABSTRACT

Subarachnoid hemorrhage (SAH) is a devastating cerebrovascular event that often is followed by permanent brain impairments. It is necessary to explore the pathogenesis of secondary pathological damages in order to find effective interventions for improving the prognosis of SAH. Blockage of brain lymphatic drainage has been shown to worsen cerebral ischemia and edema after acute SAH. However, whether or not there is persistent dysfunction of cerebral lymphatic drainage following SAH remains unclear. In this study, autologous blood was injected into the cisterna magna of mice to establish SAH model. One week after surgery, SAH mice showed decreases in fluorescent tracer drainage to the deep cervical lymph nodes (dcLNs) and influx into the brain parenchyma after injection into the cisterna magna. Moreover, SAH impaired polarization of astrocyte aquaporin-4 (AQP4) that is a functional marker of glymphatic clearance and resulted in accumulations of Tau proteins as well as CD3+, CD4+, and CD8+ cells in the brain. In addition, pathological changes, including microvascular spasm, activation of glial cells, neuroinflammation, and neuronal apoptosis were observed in the hippocampus of SAH mice. Present results demonstrate persistent malfunction of glymphatic and meningeal lymphatic drainage and related neuropathological damages after SAH. Targeting improvement of brain lymphatic clearance potentially serves as a new strategy for the treatment of SAH.

2.
Transl Neurodegener ; 8: 7, 2019.
Article in English | MEDLINE | ID: mdl-30867902

ABSTRACT

BACKGROUND: Abnormal aggregation of brain α-synuclein is a central step in the pathogenesis of Parkinson's disease (PD), thus, it is reliable to promote the clearance of α-synuclein to prevent and treat PD. Recent studies have revealed an essential role of glymphatic system and meningeal lymphatic vessels in the clearance of brain macromolecules, however, their pathophysiological aspects remain elusive. METHOD: Meningeal lymphatic drainage of 18-week-old A53T mice was blocked via ligating the deep cervical lymph nodes. Six weeks later, glymphatic functions and PD-like phenotypes were systemically analyzed. RESULTS: Glymphatic influx of cerebrospinal fluid tracer was reduced in A53T mice, accompanied with perivascular aggregation of α-synuclein and impaired polarization of aquaporin 4 expression in substantia nigra. Cervical lymphatic ligation aggravated glymphatic dysfunction of A53T mice, causing more severe accumulation of α-synuclein, glial activation, inflammation, dopaminergic neuronal loss and motor deficits. CONCLUSION: The results suggest that brain lymphatic clearance dysfunction may be an aggravating factor in PD pathology.

3.
Elife ; 72018 12 18.
Article in English | MEDLINE | ID: mdl-30561329

ABSTRACT

The glymphatic system is a brain-wide clearance pathway; its impairment contributes to the accumulation of amyloid-ß. Influx of cerebrospinal fluid (CSF) depends upon the expression and perivascular localization of the astroglial water channel aquaporin-4 (AQP4). Prompted by a recent failure to find an effect of Aqp4 knock-out (KO) on CSF and interstitial fluid (ISF) tracer transport, five groups re-examined the importance of AQP4 in glymphatic transport. We concur that CSF influx is higher in wild-type mice than in four different Aqp4 KO lines and in one line that lacks perivascular AQP4 (Snta1 KO). Meta-analysis of all studies demonstrated a significant decrease in tracer transport in KO mice and rats compared to controls. Meta-regression indicated that anesthesia, age, and tracer delivery explain the opposing results. We also report that intrastriatal injections suppress glymphatic function. This validates the role of AQP4 and shows that glymphatic studies must avoid the use of invasive procedures.


Subject(s)
Aquaporin 4/metabolism , Astrocytes/metabolism , Brain/metabolism , Glymphatic System , Animals , Aquaporin 4/genetics , Biological Transport , Cerebrospinal Fluid/metabolism , Extracellular Fluid/metabolism , Mice, Knockout , Rats
4.
Int J Neuropsychopharmacol ; 21(12): 1114-1127, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30247630

ABSTRACT

Background: Social isolation in the elderly is one of the principal health risks in an aging society. Physical environmental enrichment is shown to improve sensory, cognitive, and motor functions, but it is unknown whether environmental enrichment can protect against brain impairments caused by social isolation. Methods: Eighteen-month-old mice were housed, either grouped or isolated, in a standard or enriched environment for 2 months, respectively. Behavioral tests were performed to evaluate cognitive functional and social interaction ability. Synaptic protein levels, myelination, neuroinflammation, brain derived neurotrophic factor, and NOD-like receptor protein 3 inflammasome signaling pathways were examined in the medial prefrontal cortex and hippocampus. Results: Isolated aged mice exhibited declines in spatial memory and social memory compared with age-matched littermates living within group housing. The aforementioned memory malfunctions were mitigated in isolated aged mice that were housed in a large cage with a running wheel and novel toys. Enriched housing prevented synaptic protein loss, myelination defects, and downregulation of brain derived neurotrophic factor, while also increasing interleukin 1 beta and tumor necrosis factor alpha in the medial prefrontal cortex and hippocampus of isolated mice. In addition, activation of glial cells and NOD-like receptor protein 3 inflammasomes was partially ameliorated in the hippocampus of isolated mice treated with physical environmental enrichment. Conclusions: These results suggest that an enriched physical environment program may serve as a nonpharmacological intervention candidate to help maintain healthy brain function of elderly people living alone.


Subject(s)
Aging/physiology , Behavior, Animal/physiology , Cognitive Dysfunction/physiopathology , Environment , Social Isolation , Social Perception , Spatial Memory/physiology , Animals , Cognitive Dysfunction/prevention & control , Disease Models, Animal , Inflammasomes , Inflammation/immunology , Male , Mice , Mice, Inbred C57BL
5.
Med Hypotheses ; 119: 18-21, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30122483

ABSTRACT

Currently, there are no effective drug therapies for Alzheimer's disease (AD). Thus, exploring new non-pharmacological strategies, including the neuroprotective mechanisms of aerobic exercise, to enhance therapeutic treatment of AD are essential. Previous studies have shown that the beneficial efficiency of aerobic exercise in the prevention and treatment of AD is time-sensitive, but its mechanism is not clear. Recent studies revealed that the water channel protein aquaporin 4 (AQP4) mediates the glymphatic system to clear interstitial solutes, including ß-amyloid, from the brain. More recently, voluntary exercise has been shown to promote glymphatic clearance function in mice. However, glymphatic function is reduced in the mid- or late-stage of AD due to the loss of the polarity distribution of AQP4. Based on this, we hypothesized that AQP4-mediated glymphatic system clearance function is a determining factor for time-sensitive treatment of aerobic exercise in patients with AD. While further studies are necessary, the potential results are important for elucidating the new pro-cognitive mechanism of aerobic exercise, but also help to establish a new strategy for treatment of AD via regulation of glymphatic clearance function by targeting AQP4.


Subject(s)
Alzheimer Disease/therapy , Aquaporin 4/metabolism , Astrocytes/metabolism , Exercise Therapy , Glymphatic System/metabolism , Animals , Brain/metabolism , Exercise , Humans , Mice , Neuroprotection
6.
Brain Behav Immun ; 64: 232-243, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28412142

ABSTRACT

Early social isolation (SI) produces a variety of emotional, behavioral and cognitive abnormalities. Conversely, environmental enrichment (EE), a complicated social and physical construct, offers beneficial effects on brain plasticity and development. However, whether or not exclusive physical EE is sufficient to reverse the adverse consequences of early SI remains unclear. Here we reported that 1month-old solitary mice housed in the EE for 8weeks corrected spatial cognitive dysfunction, but did not ameliorate social interaction deficits and increased anxiety-like behavior. Pathological analyses revealed that the enriched environment decreased cellular apoptosis, synaptic protein loss, myelination defect and microglial activation in the hippocampus, but not medial prefrontal cortex (mPFC) of mice housed singly. Moreover, increased nuclear factor-kappaB and interleukin-1ß levels, and downregulation of brain-derived neurotrophic factor signaling pathway were normalized in the hippocampus rather than mPFC of these animals. Our results revealed a brain region-specific effectiveness of physical EE in remediating brain impairment of adolescent SI mice, with a complete reversal of hippocampus-dependent cognitive dysfunctions, but without mitigation of mPFC associated anxiety and social interaction defects. This finding emphasizes the irreplaceable role of social life for the early brain development.


Subject(s)
Environment , Hippocampus/metabolism , Prefrontal Cortex/metabolism , Social Isolation , Animals , Anxiety , Apoptosis , Behavior, Animal , Encephalitis/metabolism , Hippocampus/pathology , Hippocampus/ultrastructure , Mice , Myelin Sheath/pathology , Prefrontal Cortex/pathology , Prefrontal Cortex/ultrastructure , Spatial Learning , Spatial Memory
7.
Behav Brain Res ; 321: 69-78, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28043900

ABSTRACT

It has been reported that more than one fourth of the world's population suffers from sleep problems. However, there is not a stable and reliable animal model to mimic the persistent and periodic features of sleep disorders, and correspondingly, the feasibility and effectiveness of repeated behavioral tests remains to be determined. In the present study, we repetitively, and intermittently, treated mice with 3days and 7days of paradoxical sleep deprivation (SD), using the modified multiple small-platforms-over-water method for 3 months. The behavioral results suggested that repeated open field and Y-maze tests are able to successfully detect anxiety-like behaviors and working memory dysfunction of the model mice. The Morris water maze test is not suitable for evaluating spatial learning ability following SD because the long-term utilization of the flower-pot method increases the familiarity of mice with the water environment. Moreover, neuroinflammation, microglial activation and neuronal apoptosis were observed in the hippocampus of model mice even recovery for 3 weeks later. This animal model and corresponding behavioral evaluation method will help to explore the pathogenesis and therapeutic strategies of chronic sleep disorders.


Subject(s)
Anxiety/immunology , Cognition/physiology , Hippocampus/immunology , Sleep Deprivation/immunology , Sleep Deprivation/psychology , Animals , Anxiety/pathology , Apoptosis/immunology , Disease Models, Animal , Hippocampus/pathology , Inflammation/etiology , Inflammation/pathology , Inflammation/psychology , Male , Maze Learning/physiology , Memory Disorders/etiology , Memory Disorders/immunology , Memory Disorders/pathology , Memory, Short-Term/physiology , Mice , Microglia/immunology , Microglia/pathology , Neuroimmunomodulation/physiology , Neurons/immunology , Neurons/pathology , Sleep Deprivation/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...