Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Parasit Vectors ; 14(1): 550, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34702326

ABSTRACT

BACKGROUND: Schistosomiasis is a debilitating and neglected tropical disease for which praziquantel (PZQ) remains the first-choice drug for treatment and control of the disease. In our previous studies, we found that the patented compound DW-3-15 (patent no. ZL201110142538.2) displayed significant and stabilized antiparasitic activity through a mechanism that might be distinct from PZQ. Here, we investigated the antischistosomal efficacy of PZQ combined with DW-3-15 against schistosomula and adult worms of Schistosoma japonicum in vitro and in vivo, to verify whether there was a synergistic effect of the two compounds. METHODS: The antischistosomal efficacy of PZQ combined with DW-3-15 in comparison with an untreated control and monotherapy group against schistosomula and adult worms was assessed both in vitro and in vivo. Parasitological studies, scanning electron microscopy, combination index, and histopathological analysis were used for the assessment. RESULTS: The results showed significantly reduced viability of schistosomes, achieving 100% viability reduction for juveniles and males by combination chemotherapy using PZQ together with DW-3-15 in vitro. The combination index was 0.28, 0.27, and 0.53 at the higher concentration of PZQ combined with DW-3-15 against juveniles, males, and females, respectively, indicating that the two compounds display strong synergism. Scanning electron microscopy observations also demonstrated that the compound combination induced more severe and extensive alterations to the tegument and subtegument of S. japonicum than those with each compound alone. In vivo, compared with the single-compound-treated group, the group treated with the higher-dose combination demonstrated the best schistosomicidal efficacy, with significantly reduced worm burden, egg burden, and granuloma count and area, which was evident against schistosomula and adult worms. CONCLUSIONS: Our study provides a potential novel chemotherapy for schistosomiasis caused by S. japonicum. It would improve the antischistosomal effect on schistosomula and adult worms of S. japonicum, and decrease individual dosages.


Subject(s)
Drug Therapy, Combination/methods , Praziquantel/pharmacology , Praziquantel/therapeutic use , Schistosoma japonicum/drug effects , Schistosomicides/pharmacology , Schistosomicides/therapeutic use , Animals , Drug Synergism , Female , Mice, Inbred ICR , Parasite Egg Count
2.
Onco Targets Ther ; 14: 2563-2573, 2021.
Article in English | MEDLINE | ID: mdl-33880035

ABSTRACT

Cancer is one of the major threats to human health. Although humans have struggled with cancer for decades, the efficacy of treatments for most tumors is still very limited. Dihydroartemisinin (DHA) is a derivative of artemisinin, a first-line antimalarial drug originally developed in China. Beyond the anti-malarial effect, DHA has also been reported to show anti-inflammatory, anti-parasitosis, and immune-modulating properties in vitro and in vivo. Furthermore, an increasing number of studies report that DHA possesses anticancer activities on a wide range of cancer types both in vitro and in vivo, as well as enhances the efficacy of chemotherapy, targeted therapy, and even radiotherapy. However, the mechanisms of DHA on different tumors differ in various ways. In this review, we intend to summarize how DHA sensitizes cancer cells to anti-cancer therapies, highlight its molecular mechanisms and pharmacological effects in vitro and in vivo as well as in current clinical trials, and discuss potential issues concerning DHA. Hopefully, more attention will be paid to DHA as a sensitizer for cancer therapy in the future.

3.
Chin Med ; 15: 37, 2020.
Article in English | MEDLINE | ID: mdl-32351616

ABSTRACT

BACKGROUND: Dihydroartemisinin (DHA), a derivate of artemisinin, is an effective antimalarial agent. DHA has been shown to exert anticancer activities to numerous cancer cells in the past few years, while the exact molecular mechanisms remain to be elucidated, especially in esophageal cancer. METHODS: Crystal violet assay was conducted to determine the cell viability of human esophageal cancer cell line Eca109 treated with DHA. Tumor-bearing nude mice were employed to evaluate the anticancer effect of DHA in vivo. Soft agar and crystal violet assays were used to measure the tumorigenicity of Eca109 cells. Flow cytometry was performed to evaluate ROS or cell cycle distribution. GFP-LC3 plasmids were delivered into Eca109 cells to visualize autophagy induced by DHA under a fluorescence microscope. The mRNA and protein levels of each gene were tested by qRT-PCR and western blot, respectively. RESULTS: Our results proved that DHA significantly reduced the viability of Eca109 cells in a dose- and time-dependent manner. Further investigation showed that DHA evidently induced cell cycle arrest at the G2/M phase in Eca109 cells. Mechanistically, DHA induced intracellular ROS generation and autophagy in Eca109 cells, while blocking ROS by an antioxidant NAC obviously inhibited autophagy. Furthermore, we found that telomere shelterin component TRF2 was down-regulated in Eca109 cells exposed to DHA through autophagy-dependent degradation, which could be rescued after autophagy was blocked by ROS inhibition. Moreover, the DNA damage response (DDR) was induced obviously in DHA treated cells. To further explore whether ROS or autophagy played a vital role in DHA induced cell cycle arrest, the cell cycle distribution of Eca109 cells was evaluated after ROS or autophagy blocking, and the results showed that autophagy, but not ROS, was essential for cell cycle arrest in DHA treated cells. CONCLUSION: Taken together, DHA showed anticancer effect on esophageal cancer cells through autophagy-dependent cell cycle arrest at the G2/M phase, which unveiled a novel mechanism of DHA as a chemotherapeutic agent, and the degradation of TRF2 followed by DDR might be responsible for this cell phenotype.

4.
Medicine (Baltimore) ; 98(27): e16269, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31277149

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is a malignancy that severely threatens human health and carries a high incidence rate and a low 5-year survival rate. MicroRNAs (miRNAs) are commonly accepted as a key regulatory function in human cancer, but the potential regulatory mechanisms of miRNA-mRNA related to ESCC remain poorly understood.The GSE55857, GSE43732, and GSE6188 miRNA microarray datasets and the gene expression microarray datasets GSE70409, GSE29001, and GSE20347 were downloaded from Gene Expression Omnibus databases. The differentially expressed miRNAs (DEMs) and differentially expressed genes (DEGs) were obtained using GEO2R. Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis for DEGs were performed by Database for Annotation, Visualization and Integrated Discovery (DAVID). A protein-protein interaction (PPI) network and functional modules were established using the STRING database and were visualized by Cytoscape. Kaplan-Meier analysis was constructed based on The Cancer Genome Atlas (TCGA) database.In total, 26 DEMs and 280 DEGs that consisted of 96 upregulated and 184 downregulated genes were screened out. A functional enrichment analysis showed that the DEGs were mainly enriched in the ECM-receptor interaction and cytochrome P450 metabolic pathways. In addition, MMP9, PCNA, TOP2A, MMP1, AURKA, MCM2, IVL, CYP2E1, SPRR3, FOS, FLG, TGM1, and CYP2C9 were considered to be hub genes owing to high degrees in the PPI network. MiR-183-5p was with the highest connectivity target genes in hub genes. FOS was predicted to be a common target gene of the significant DEMs. Hsa-miR-9-3p, hsa-miR-34c-3p and FOS were related to patient prognosis and higher expression of the transcripts were associated with a poor OS in patients with ESCC.Our study revealed the miRNA-mediated hub genes regulatory network as a model for predicting the molecular mechanism of ESCC. This may provide novel insights for unraveling the pathogenesis of ESCC.


Subject(s)
Computational Biology/methods , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , RNA, Neoplasm/genetics , Databases, Genetic , Esophageal Neoplasms/metabolism , Esophageal Squamous Cell Carcinoma/metabolism , Filaggrin Proteins , Gene Ontology , Gene Regulatory Networks , Humans , Microarray Analysis
5.
J Cell Physiol ; 234(12): 22742-22752, 2019 12.
Article in English | MEDLINE | ID: mdl-31127628

ABSTRACT

Non-small-cell lung cancer (NSCLC) is one of the main causes of death induced by cancer globally. However, the molecular aberrations in NSCLC patients remain unclearly. In the present study, four messenger RNA microarray datasets (GSE18842, GSE40275, GSE43458, and GSE102287) were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between NSCLC tissues and adjacent lung tissues were obtained from GEO2R and the overlapping DEGs were identified. Moreover, functional and pathway enrichment were performed by Funrich, while the protein-protein interaction (PPI) network construction were obtained from STRING and hub genes were visualized and identified by Cytoscape software. Furthermore, validation, overall survival (OS) and tumor staging analysis of selected hub genes were performed by GEPIA. A total of 367 DEGs (95 upregulated and 272 downregulated) were obtained through gene integration analysis. The PPI network consisted of 94 nodes and 1036 edges in the upregulated DEGs and 272 nodes and 464 edges in the downregulated DEGs, respectively. The PPI network identified 46 upregulated and 27 downregulated hub genes among the DEGs, and six (such as CENPE, NCAPH, MYH11, LRRK2, HSD17B6, and A2M) of that have not been identified to be associated with NSCLC so far. Moreover, the expression differences of the mentioned hub genes were consistent with that in lung adenocarcinoma and lung squamous cell carcinoma in the TCGA database. Further analysis showed that all the six hub genes were associated with tumor staging except MYH11, while only the upregulated DEG CENPE was associated with the worse OS of patients with NSCLC. In conclusion, the current study showed that CENPE, NCAPH, MYH11, LRRK2, HSD17B6, and A2M might be the key genes contributed to tumorigenesis or tumor progression in NSCLC, further functional study is needed to explore the involved mechanisms.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/therapy , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Computational Biology , Databases, Genetic , Disease Progression , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Genetic Predisposition to Disease , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Myosin Heavy Chains/genetics , Neoplasm Staging , Nuclear Proteins/genetics , Phenotype , Protein Interaction Maps , Racemases and Epimerases/genetics , Signal Transduction/genetics , Transcriptome , alpha-Macroglobulins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...