Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 24(1): 741, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39095692

ABSTRACT

BACKGROUND: Daye No.3 is a novel cultivar of alfalfa (Medicago sativa L.) that is well suited for cultivation in high-altitude regions such as the Qinghai‒Tibet Plateau owing to its high yield and notable cold resistance. However, the limited availability of transcriptomic information has hindered our investigation into the potential mechanisms of cold tolerance in this cultivar. Consequently, we conducted de novo transcriptome assembly to overcome this limitation. Subsequently, we compared the patterns of gene expression in Daye No. 3 during cold acclimatization and exposure to cold stress at various time points. RESULTS: A total of 15 alfalfa samples were included in the transcriptome assembly, resulting in 141.97 Gb of clean bases. A total of 441 DEGs were induced by cold acclimation, while 4525, 5016, and 8056 DEGs were identified at 12 h, 24 h, and 36 h after prolonged cold stress at 4 °C, respectively. The consistency between the RT‒qPCR and transcriptome data confirmed the accuracy and reliability of the transcriptomic data. KEGG enrichment analysis revealed that many genes related to photosynthesis were enriched under cold stress. STEM analysis demonstrated that genes involved in nitrogen metabolism and the TCA cycle were consistently upregulated under cold stress, while genes associated with photosynthesis, particularly antenna protein genes, were downregulated. PPI network analysis revealed that ubiquitination-related ribosomal proteins act as hub genes in response to cold stress. Additionally, the plant hormone signaling pathway was activated under cold stress, suggesting its vital role in the cold stress response of alfalfa. CONCLUSIONS: Ubiquitination-related ribosomal proteins induced by cold acclimation play a crucial role in early cold signal transduction. As hub genes, these ubiquitination-related ribosomal proteins regulate a multitude of downstream genes in response to cold stress. The upregulation of genes related to nitrogen metabolism and the TCA cycle and the activation of the plant hormone signaling pathway contribute to the enhanced cold tolerance of alfalfa.


Subject(s)
Cold-Shock Response , Gene Expression Profiling , Medicago sativa , Transcriptome , Medicago sativa/genetics , Medicago sativa/physiology , Cold-Shock Response/genetics , Gene Expression Regulation, Plant , Acclimatization/genetics , Cold Temperature , Plant Proteins/genetics , Plant Proteins/metabolism
2.
Genes (Basel) ; 14(11)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-38002945

ABSTRACT

Saussurea plants are widely distributed in Asia and Europe; however, their complex phylogenetic relationships have led to many difficulties in phylogenetic studies and interspecific identification. In this study, we assembled, annotated, and analyzed the chloroplast genomes of three Saussurea plants: Saussurea katochaete, Saussurea superba, and Saussurea stella. The results showed that the full-length sequences of the three Saussurea plants were 152,561 bp, 151,452 bp, and 152,293 bp, respectively, which represent the typical quadripartite structure, and the genomes were relatively conserved. The gene annotation results showed that the chloroplast genomes of S. katochaete, S. superba, and S. stella were annotated with 128, 124, and 127 unique genes, respectively, which included 83, 80, and 83 protein-coding genes (PCGs), respectively, 37, 36, and 36 tRNA genes, respectively, and 8 rRNA genes. Moreover, 46, 45, and 43 SSR loci, respectively, and nine highly variable regions (rpl32-trnL-UAG, rpl32, ndhF-rpl32, ycf1, trnC-GCA-petN, trnC-GCA, rpcL, psbE-petL, and rpl16-trnG-UUG) were identified and could be used as potential molecular markers for population identification and phylogenetic study of Saussurea plants. Phylogenetic analyses strongly support the sisterhood of S. katochaete with S. superba and S. stella, and are all clustered with S. depsagensis, S. inversa, S. medusa, and S. gossipihora, of which S. gossipiphora is most closely related. Additionally, the phylogenetic results indicate a high frequency of differentiation among different species of Saussurea plants, and many different species or genera are morphologically very different from each other, which may be related to certain genetic material in the chloroplasts. This study provides an important reference for the identification of Saussurea plants and studies their evolution and phylogenetics.


Subject(s)
Genome, Chloroplast , Saussurea , Phylogeny , Whole Genome Sequencing/methods , Saussurea/genetics , Chloroplasts/genetics , Plants/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...