Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ren Fail ; 45(2): 2284212, 2023.
Article in English | MEDLINE | ID: mdl-38013448

ABSTRACT

OBJECTIVE: The purpose of this study was to identify potential biomarkers in the tubulointerstitium of focal segmental glomerulosclerosis (FSGS) and comprehensively analyze its mRNA-miRNA-lncRNA/circRNA network. METHODS: The expression data (GSE108112 and GSE200818) were downloaded from the Gene Expression Omnibus database (https://www.ncbi.nlm.nih.gov/geo/). Identification and enrichment analysis of differentially expressed genes (DEGs) were performed. the PPI networks of the DEGs were constructed and classified using the Cytoscape molecular complex detection (MCODE) plugin. Weighted gene coexpression network analysis (WGCNA) was used to identify critical gene modules. Least absolute shrinkage and selection operator regression analysis were used to screen for key biomarkers of the tubulointerstitium in FSGS, and the receiver operating characteristic curve was used to determine their diagnostic accuracy. The screening results were verified by quantitative real-time-PCR (qRT-PCR) and Western blot. The transcription factors (TFs) affecting the hub genes were identified by Cytoscape iRegulon. The mRNA-miRNA-lncRNA/circRNA network for identifying potential biomarkers was based on the starBase database. RESULTS: A total of 535 DEGs were identified. MCODE obtained eight modules. The green module of WGCNA had the greatest association with the tubulointerstitium in FSGS. PPARG coactivator 1 alpha (PPARGC1A) was screened as a potential tubulointerstitial biomarker for FSGS and verified by qRT-PCR and Western blot. The TFs FOXO4 and FOXO1 had a regulatory effect on PPARGC1A. The ceRNA network yielded 17 miRNAs, 32 lncRNAs, and 50 circRNAs. CONCLUSIONS: PPARGC1A may be a potential biomarker in the tubulointerstitium of FSGS. The ceRNA network contributes to the comprehensive elucidation of the mechanisms of tubulointerstitial lesions in FSGS.


Subject(s)
Glomerulosclerosis, Focal Segmental , MicroRNAs , RNA, Long Noncoding , Humans , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Circular , Glomerulosclerosis, Focal Segmental/diagnosis , Glomerulosclerosis, Focal Segmental/genetics , Biomarkers , Computational Biology , RNA, Messenger/genetics
2.
Ren Fail ; 45(1): 2202264, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37096442

ABSTRACT

OBJECTIVE: The aim of our study was to identify key biomarkers of glomeruli in focal glomerulosclerosis (FSGS) and analyze their relationship with the infiltration of immune cells. METHODS: The expression profiles (GSE108109 and GSE200828) were obtained from the GEO database. The differentially expressed genes (DEGs) were filtered and analyzed by gene set enrichment analysis (GSEA). MCODE module was constructed. Weighted gene coexpression network analysis (WGCNA) was performed to obtain the core gene modules. Least absolute shrinkage and selection operator (LASSO) regression was applied to identify key genes. ROC curves were employed to explore their diagnostic accuracy. Transcription factor prediction of the key biomarkers was performed using the Cytoscape plugin IRegulon. The analysis of the infiltration of 28 immune cells and their correlation with the key biomarkers were performed. RESULTS: A total of 1474 DEGs were identified. Their functions were mostly related to immune-related diseases and signaling pathways. MCODE identified five modules. The turquoise module of WGCNA had significant relevance to the glomerulus in FSGS. TGFB1 and NOTCH1 were identified as potential key glomerular biomarkers in FSGS. Eighteen transcription factors were obtained from the two hub genes. Immune infiltration showed significant correlations with T cells. The results of immune cell infiltration and their relationship with key biomarkers implied that NOTCH1 and TGFB1 were enhanced in immune-related pathways. CONCLUSION: TGFB1 and NOTCH1 may be strongly correlated with the pathogenesis of the glomerulus in FSGS and are new candidate key biomarkers. T-cell infiltration plays an essential role in the FSGS lesion process.


Subject(s)
Glomerulosclerosis, Focal Segmental , Humans , Gene Regulatory Networks , Kidney Glomerulus , Algorithms , Biomarkers , Transcription Factors
3.
Ren Fail ; 44(1): 966-986, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35713363

ABSTRACT

OBJECTIVE: The present study identified novel renal tubular biomarkers that may influence the diagnosis and treatment of focal segmental glomerulosclerosis (FSGS) based on immune infiltration. METHODS: Three FSGS microarray datasets, GSE108112, GSE133288 and GSE121211, were downloaded from the Gene Expression Omnibus (GEO) database. The R statistical software limma package and the combat function of the sva package were applied for preprocessing and to remove the batch effects. Differentially expressed genes (DEGs) between 120 FSGS and 15 control samples were identified with the limma package. Disease Ontology (DO) pathway enrichment analysis was conducted with statistical R software to search for related diseases. Gene set enrichment analysis (GSEA) was used to interpret the gene expression data and it revealed many common biological pathways. A protein-protein interaction (PPI) network was built using the Search Tool for the Retrieval of Interacting Genes (STRING) database, and hub genes were identified by the Cytoscape (version 3.7.2) plug-in CytoHubba. The plug-in Molecular Complex Detection (MCODE) was used to screen hub modules of the PPI network in Cytoscape, while functional analysis of the hub genes and hub nodes involved in the submodule was performed by ClusterProfiler. The least absolute shrinkage and selection operator (LASSO) regression and support vector machine recursive feature elimination (SVM-RFE) analysis were used to screen characteristic genes and build a logistic regression model. Receiver operating characteristic (ROC) curve analyses were used to investigate the logistic regression model and it was then validated by an external dataset GSE125779, which contained 8 FSGS samples and 8 healthy subjects. Cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) was used to calculate the immune infiltration of FSGS samples. RESULTS: We acquired 179 DEGs, 79 genes with downregulated expression (44.1%) and 100 genes with upregulated expression (55.9%), in the FSGS samples. The DEGs were significantly associated with arteriosclerosis, kidney disease and arteriosclerotic cardiovascular disease. GSEA revealed that these gene sets were significantly enriched in allograft rejection signaling pathways and activation of immune response in biological processes. Fifteen genes were demonstrated to be hub genes by PPI, and three submodules were screened by MCODE linked with FSGS. Analysis by machine learning methodologies identified nuclear receptor subfamily 4 group A member 1 (NR4A1) and dual specificity phosphatase 1 (DUSP1) as sensitive tubular renal biomarkers in the diagnosis of FSGS, and they were selected as hub genes, as well as hub nodes which were enriched in the MAPK signaling pathway. Immune cell infiltration analysis revealed that the genetic biomarkers were both correlated with activated mast cells, which may amplify FSGS biological processes. CONCLUSION: DUSP1 and NR4A1 were identified as sensitive potential biomarkers in the diagnosis of FSGS. Activated mast cells have a decisive effect on the occurrence and development of FSGS through tubular lesions and tubulointerstitial inflammation, and they are expected to become therapeutic targets in FSGS.


Subject(s)
Glomerulosclerosis, Focal Segmental , Biomarkers , Computational Biology/methods , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Glomerulosclerosis, Focal Segmental/diagnosis , Glomerulosclerosis, Focal Segmental/genetics , Humans
4.
AMB Express ; 7(1): 104, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28549372

ABSTRACT

Paenibacillus polymyxa (SQR-21) is not only a plant growth-promoting rhizobacteria, but also an effective biocontrol agent against Fusarium wilt disease of watermelon. For the better understanding and clarifying the potential mechanisms of SQR-21 to improve watermelon growth and disease resistance, a split-root methodology in hydroponic and LC-MS technology with the label free method was used to analyze the key root proteins involved in watermelon metabolism and disease resistance after the inoculation of SQR-21. Out of 623 identified proteins, 119 proteins were differentially expressed when treatment (SQR-21 inoculation) and control (no bacterial inoculation) were compared. Among those, 57 and 62 proteins were up-regulated and down-regulated, respectively. These differentially expressed proteins were identified to be involved in signal transduction (ADP-ribosylation factor, phospholipase D), transport (aspartate amino-transferase), carbohydratemetabolic (glucose-6-phosphate dehydrogenase, UDP-glucose pyrophosphorylase), defense and response to stress (glutathione S-transferase, Ubiquitin-activating enzyme E1), and oxidation-reduction process (thioredoxin peroxidase, ascorbate peroxidase). The results of this study indicated that SQR-21 inoculation on the watermelon roots benefits plant by inducing the expression of several proteins involved in growth, photosynthesis, and other metabolic and physiological activities.

SELECTION OF CITATIONS
SEARCH DETAIL
...