Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Med Sci ; 20(1): 216-232, 2024.
Article in English | MEDLINE | ID: mdl-38414459

ABSTRACT

Introduction: In this study, we investigated the role of the long non-coding RNA GAPLINC in atherosclerosis under oxidized low-density lipoprotein (ox-LDL) treatment. Material and methods: We utilized ox-LDL exposed human aortic endothelial cells as an in-vitro model. The expression level of GAPLINC was quantified by qPCR in different times and concentrations of ox-LDL treatment conditions. Cell apoptosis rate and cell cycle profiles were assessed by flow cytometry and TUNEL assay. The target association was confirmed using a luciferase reporter assay and Western blot. Results: We found that GAPLINC expression was induced by ox-LDL treatment, but cell proliferation ability was significantly inhibited. We further confirmed that overexpressing of lncRNA GAPLINC in ox-LDL-exposed HAECs decreased cell proliferation by increasing cell apoptosis and arresting cell cycle in G2/M and S phase. Importantly, the detailed mechanistic analysis elucidated that LncRNA GAPLINC acts as a decoy to sequester miR-183-5p to prevent it from binding to target PDCD4. MiR-183-5p targets GAPLINC, and PDCD4 is a downstream target of miR-183-5p, and the cellular effects of this direct interaction were confirmed by a rescue assay experiment. Conclusions: The present study demonstrates that upregulation of lncRNA GAPLINC represses the binding of miR-183-5p to the PDCD4 promoter region and then promotes PDCD4 expression, thereby inducing cell apoptosis and suppressing endothelial cell proliferation.

2.
Cell Cycle ; 20(14): 1389-1401, 2021 07.
Article in English | MEDLINE | ID: mdl-34223793

ABSTRACT

Vascular endothelial dysfunction is associated with the progress of many diseases. Circular RNAs (circRNAs) take part in the dysfunction of vascular endothelium. CircRNA hsa_circ_0008360 (circ_0008360) is dysregulated in high glucose-treated vascular endothelium, while the role and mechanism of circ_0008360 in high glucose-induced dysfunction remain unknown. Human umbilical vascular endothelium cells (HUVEC) were stimulated via high glucose. The abundances of circ_0008360, miR-186-5p and cyclin D2 (CCND2) were examined via quantitative real-time polymerase chain reaction or western blot. Vascular endothelial dysfunction was assessed via cell viability, apoptosis, migration and tube formation. The target relationship between miR-186-5p and circ_0008360 or CCND2 was analyzed via dual-luciferase reporter, RNA pull-down and RNA immunoprecipitation analyses. Circ_0008360 expression was enhanced in high-glucose-treated HUVEC. Circ_0008360 silence mitigated high glucose-induced suppression of viability, migration, tube formation, and increase in apoptosis in HUVEC. MiR-186-5p was sponged by circ_0008360, and miR-186-5p inhibition reversed the effect of circ_0008360 silence on high glucose-induced vascular endothelial dysfunction. MiR-186-5p alleviated high glucose-induced vascular endothelial dysfunction via targeting CCND2. CCND2 interference abolished the aggravated effect of circ_0008360 on high glucose-induced vascular endothelial dysfunction. Circ_0008360 knockdown attenuated high glucose-induced vascular endothelial dysfunction via regulating miR-186-5p and CCND2, indicating circ_0008360 might act as a target for the treatment of vascular endothelial dysfunction.Abbreviations: circRNAs, circular RNAs; HUVEC, human umbilical vascular endothelium cells; CCND2, cyclin D2; XPNPEP3, X-prolyl aminopeptidase 3; ceRNAs, competing endogenous RNAs; miRNAs, microRNAs; qRT-PCR, quantitative real-time polymerase chain reaction; RIP, RNA immunoprecipitation; HIF-1α, hypoxia inducible factor 1 alpha; TLR3, toll-like receptor 3; AKAP12, A-Kinase Anchoring Protein 12; ox-LDL, oxidized low-density lipoprotein; HG, high glucose; NG, normal glucose.


Subject(s)
MicroRNAs , RNA, Circular , Apoptosis/genetics , Cell Proliferation/genetics , Cyclin D2/genetics , Glucose/pharmacology , Humans , MicroRNAs/metabolism , RNA, Circular/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...