Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 51(41): 15854-15862, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36190513

ABSTRACT

The development of low-cost catalysts for the water oxidation reaction (WOR) is important for solving the bottleneck issues in water splitting and benefits the widespread utilization of renewable energy sources. Herein, four cobalt(II) triazolylpyridine complexes, namely [Co(DTE)2(H2O)2](ClO4)2·CH3COCH3 (1), [Co(DTE)2Cl2]·2CH3OH (2) (DTE = (1-(2-acetoxymethyl)-4-(2-pyridyl)1,2,3-triazole), [Co(DTEL)2(CH3OH)2](ClO4)2 (3), and [Co(DTEL)2Cl2]·H2O (4) (DTEL = (1-(2-hydroxy)-4-(2-pyridyl)1,2,3-triazole), were synthesized and characterized. The crystal structures of 1-3 were determined by X-ray single crystal diffraction analysis. The electrocatalytic water oxidation by 1-4 was studied in 0.1 M NaOAc-HOAc solutions. Complexes 1-4 were single-site molecular catalysts for the WOR under near-neutral conditions. The overpotentials for the WOR were 440 mV and 480 mV. The faradaic efficiencies were 77-92%. The rate constants kcat were 0.21-0.96 s-1. The catalytic activities were affected by the pendant groups of DTE and DTEL. Complexes with DTE (1 and 2) showed better activities than those with DTEL (3 and 4). Moreover, complexes 1-4 adsorbed on indium-doped tin oxide (ITO) and glassy carbon electrode surfaces were active for the WOR. A mechanism was proposed for the WOR catalyzed by 1-4.

SELECTION OF CITATIONS
SEARCH DETAIL
...