Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 14(8)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924427

ABSTRACT

Currently used elaborate technologies for the detection of bacteria can be improved in regard to their time consumption, labor intensity, accuracy and reproducibility. Well-known electrical measurement methods might connect highly sensitive sensing systems with biological requirements. The development of modified sensor surfaces with self-assembled monolayers (SAMs) from functionalized porphyrin for bacteria trapping can lead to a highly sensitive sensor for bacteria detection. Different A2BC-type porphyrin structures were synthesized and examined regarding their optical behavior. We achieved the synthesis of a porphyrin for SAM formation on a gold surface as electrode material. Two possible bio linkers were attached on the opposite meso-position of the porphyrin, which allows the porphyrin to react as a linker on the surface for bacteria trapping. Different porphyrin structures were attached to a gold surface, the SAM formation and the respective coverage was investigated.

2.
Chemistry ; 27(1): 281-288, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-32786130

ABSTRACT

The synthesis of unsubstituted oligo-para-phenylenes (OPP) exceeding para-hexaphenylene-in the literature often referred to as p-sexiphenyl-has long remained elusive due to their insolubility. We report the first preparation of unsubstituted para-nonaphenylenes (9PPs) by extending our precursor route to poly-para-phenylenes (PPP) to a discrete oligomer. Two geometric isomers of methoxylated syn- and anti-cyclohexadienylenes were synthesized, from which 9PP was obtained via thermal aromatization in thin films. 9PP was characterized via optical, infrared and solid-state 13 C NMR spectroscopy as well as atomic force microscopy and mass spectrometry, and compared to polymeric analogues. Due to the lack of substitution, para-nonaphenylene, irrespective of the precursor isomer employed, displays pronounced aggregation in the solid state. Intermolecular excitonic coupling leads to formation of H-type aggregates, red-shifting emission of the films to greenish. 9PP allows to study the structure-property relationship of para-phenylene oligomers and polymers, especially since the optical properties of PPP depend on the molecular shape of the precursor.

3.
Angew Chem Int Ed Engl ; 59(14): 5683-5695, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-31821673

ABSTRACT

2D polymer sheets with six positively charged pyrylium groups at each pore edge in a stacked single crystal can be transformed into a 2D polymer with six pyridines per pore by exposure to gaseous ammonia. This reaction furnishes still a crystalline material with tunable protonation degree at regular nano-sized pores promising as separation membrane. The exfoliation is compared for both 2D polymers with the latter being superior. Its liquid phase exfoliation yields nanosheet dispersions, which can be size-selected using centrifugation cascades. Monolayer contents of ≈30 % are achieved with ≈130 nm sized sheets in mg quantities, corresponding to tens of trillions of monolayers. Quantification of nanosheet sizes, layer number and mass shows that this exfoliation is comparable to graphite. Thus, we expect that recent advances in exfoliation of graphite or inorganic crystals (e.g. scale-up, printing etc.) can be directly applied to this 2D polymer as well as to covalent organic frameworks.

4.
ACS Appl Mater Interfaces ; 12(5): 6565-6572, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-31825591

ABSTRACT

Conformationally rigid multipodal molecules should control the orientation and packing density of functional head groups upon self-assembly on solid supports. Common tripods frequently fail in this regard because of inhomogeneous bonding configuration and stochastic orientation. These issues are circumvented by a suitable tetrapodal diazatriptycene moiety, bearing four thiol-anchoring groups, as demonstrated in the present study. Such molecules form well-defined self-assembled monolayers (SAMs) on Au(111) substrates, whereby the tetrapodal scaffold enforces a nearly upright orientation of the terminal head group with respect to the substrate, with at least three of the four anchoring groups providing thiolate-like covalent attachment to the surface. Functionalization by condensation chemistry allows a large variety of functional head groups to be introduced to the tetrapod, paving the path toward advanced surface engineering and sensor fabrication.

5.
ACS Nano ; 14(1): 28-117, 2020 01 28.
Article in English | MEDLINE | ID: mdl-31478375

ABSTRACT

The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.

6.
ACS Appl Mater Interfaces ; 11(21): 19481-19488, 2019 May 29.
Article in English | MEDLINE | ID: mdl-31050397

ABSTRACT

We investigated unsubstituted poly( para-phenylene) (PPP), a long-desired prototype of a conjugated polymer semiconductor. PPP was accessed via thermal aromatization of a precursor polymer bearing kinked, solubility-inducing dimethoxycyclohexadienylene moieties. IR spectroscopy and Vis ellipsometry studies revealed that the rate of conversion of the precursor to PPP increases with temperature and decreases with film density, indicating a process with high activation volume. The obtained PPP films were analyzed in thin-film transistors to gain insights into the interplay between the degree of conversion and the resulting p-type semiconducting properties. The semiconducting behavior of PPP was further unambiguously proven through IR and transistor measurements of molybdenum trioxide p-doped films.

7.
J Phys Condens Matter ; 31(19): 195001, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30763922

ABSTRACT

The plasmonic signals of quasi-1D electron systems are a clear and direct measure of their metallic behavior. Due to the finite size of such systems in reality, plasmonic signals from a gold-induced superstructure on Si(5 5 3) can be studied with infrared spectroscopy. The infrared spectroscopic features have turned out to be extremely sensitive to adsorbates. Even without geometrical changes of the surface superstructure, the effects of doping, of the adsorbate induced electronic surface scattering, and of the electronic polarizability changes on top of the substrate surface give rise to measurable changes of the plasmonic signal. Especially strong changes of the plasmonic signal have been observed for gold, oxygen, and hydrogen exposure. The plasmonic resonance gradually disappears under these exposures, indicating the transion to an insulating behavior, which is in accordance with published results obtained from other experimental methods. For C70 and, as shown here for the first time, TAPP-Br, the plasmonic signal almost retains its original intensity even up to coverages of many monolayers. For C70, the changes of the spectral shape, e.g. of electronic damping and of the resonance position, were also found to be marginal. On the other hand, TAPP-Br adsorption shifts the plasmonic resonance to higher frequencies and strongly increases the electronic damping. Given the dispersion relation for plasmonic resonances of 1D electron systems, the findings for TAPP-Br indicate a push-back effect and therefore stronger confinement of the free charge carriers in the quasi-one-dimensonal channel due to the coverage by the flat TAPP-Br molecules. On the gold-doped Si(5 5 3)-Au surface TAPP-Br acts as counter dopant and increases the plasmonic signal.

8.
Analyst ; 143(24): 6025-6036, 2018 Dec 03.
Article in English | MEDLINE | ID: mdl-30403207

ABSTRACT

Continuous glucose monitoring enables an improved disease management for people with diabetes. However, state-of-the-art, enzyme-based, minimally invasive sensors lose their sensitivity over time and have to be replaced periodically. Here, we present the in vitro investigation of a quantum cascade laser-based measurement scheme that conceptually should be applicable over elongated periods of time due to its reagent-free nature and may therefore be considered as an approach towards long-term implantation. The method uses a miniaturized optofluidic interface in transflection geometry to measure the characteristic mid-infrared absorption properties of glucose. A glucose sensitivity of 3.2 mg dL-1 is achieved in aqueous glucose solutions. While this sensitivity drops to 12 mg dL-1 in the presence of biologically plausible, maximum concentrations of other monosaccharides, it is still well within the medically acceptable range according to Parkes error grid analysis. With a response time of less than five minutes, our sensor should be able to react adequately fast to physiological changes in glucose concentration. Finally, no drift or deterioration was found during an extended, 42 days in vitro experiment. These results underline the potential of this technique for its conceivable applicability in vivo as a long-term glucose monitoring implant.


Subject(s)
Glucose/analysis , Lasers, Semiconductor , Spectrophotometry, Infrared/methods , Albumins/chemistry , Temperature
9.
J Phys Chem Lett ; 9(13): 3731-3737, 2018 Jul 05.
Article in English | MEDLINE | ID: mdl-29923411

ABSTRACT

Studying the structure-property relations of tailored dipolar phenyl and biphenylphosphonic acids, we report self-assembled monolayers with a significant decrease in the work function (WF) of indium-tin oxide (ITO) electrodes. Whereas the strengths of the dipoles are varied through the different molecular lengths and the introduction of electron-withdrawing fluorine atoms, the surface energy is kept constant through the electron-donating N, N-dimethylamine head groups. The self-assembled monolayer formation and its modification of the electrodes are investigated via infrared reflection absorption spectroscopy, contact angle measurements, and photoelectron spectroscopy. The WF decrease in ITO correlates with increasing molecular dipoles. The lowest ever recorded WF of 3.7 eV is achieved with the fluorinated biphenylphosphonic acid.

10.
J Biophotonics ; 11(7): e201800015, 2018 07.
Article in English | MEDLINE | ID: mdl-29573178

ABSTRACT

A laser's high degree of coherence leads to interferences, which-in the absence of precautions-can cause severe image distortions such as fringes and speckles and which thereby strongly hamper a meaningful interpretation of hyperspectral images in laser-based widefield microspectroscopy. While images and spectra of homogenous samples may already suffer from interferences, any structured object such as a tissue thin section will add to these distortions due to wavelength- and, in particular, sample-dependent phase shifts (structure sizes, absorption coefficients, refractive indices). This effect is devastating for the universal applicability of laser-based microspectroscopy especially in the mid-infrared (MIR), where cell sizes are of the same dimension as the wavelength of the illumination source. Here, we show that the impact of interferences is strongly mitigated by reducing the time-averaged spatiotemporal coherence properties of the illumination using a moving plus a stationary scatterer. In this case, the illumination path provides a pseudothermal radiation source and spatially resolved spectra can be obtained at the quality of the reference method, that is, Fourier-transform infrared microspectroscopy, without compromising spectral or spatial resolution.


Subject(s)
Lasers , Spectrophotometry, Infrared/methods
11.
J Am Chem Soc ; 140(2): 574-577, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29266934

ABSTRACT

Intrinsic organic-inorganic metal halide perovskites (OIHP) based semiconductors have shown wide applications in optoelectronic devices. There have been several attempts to incorporate heterovalent metal (e.g., Bi3+) ions in the perovskites in an attempt to induce electronic doping and increase the charge carrier density in the semiconductor. It has been reported that inclusion of Bi3+ decreases the band gap of the material considerably. However, contrary to the earlier conclusions, despite a clear change in the appearance of the crystal as observed by eye, here we show that the band gap of MAPbBr3 crystals does not change due the presence of Bi3+ in the growth solution. An increased density of states in the band gap and use of very thick samples for transmission measurements, erroneously give the impression of a band gap shift. These sub band gap states also act as nonradiative recombination centers in the crystals.

12.
ACS Appl Mater Interfaces ; 9(45): 39821-39829, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29052974

ABSTRACT

Nickel oxide (NiO) is a widely used material for efficient hole extraction in optoelectronic devices. However, its surface characteristics strongly depend on the processing history and exposure to adsorbates. To achieve controllability of the electronic and chemical properties of solution-processed nickel oxide (sNiO), we functionalize its surface with a self-assembled monolayer (SAM) of 4-cyanophenylphosphonic acid. A detailed analysis of infrared and photoelectron spectroscopy shows the chemisorption of the molecules with a nominal layer thickness of around one monolayer and gives an insight into the chemical composition of the SAM. Density functional theory calculations reveal the possible binding configurations. By the application of the SAM, we increase the sNiO work function by up to 0.8 eV. When incorporated in organic solar cells, the increase in work function and improved energy level alignment to the donor does not lead to a higher fill factor of these cells. Instead, we observe the formation of a transport barrier, which can be reduced by increasing the conductivity of the sNiO through doping with copper oxide. We conclude that the widespread assumption of maximizing the fill factor by only matching the work function of the oxide charge extraction layer with the energy levels in the active material is a too narrow approach. Successful implementation of interface modifiers is only possible with a sufficiently high charge carrier concentration in the oxide interlayer to support efficient charge transfer across the interface.

13.
Adv Mater ; 29(30)2017 Aug.
Article in English | MEDLINE | ID: mdl-28585293

ABSTRACT

Stable electrical doping of organic semiconductors is fundamental for the functionality of high performance devices. It is known that dopants can be subjected to strong diffusion in certain organic semiconductors. This work studies the impact of operating conditions on thin films of the polymer poly(3-hexylthiophene) (P3HT) and the small molecule Spiro-MeOTAD, doped with two differently sized p-type dopants. The negatively charged dopants can drift upon application of an electric field in thin films of doped P3HT over surprisingly large distances. This drift is not observed in the small molecule Spiro-MeOTAD. Upon the dopants' directional movement in P3HT, a dedoped region forms at the negatively biased electrode, increasing the overall resistance of the thin film. In addition to electrical measurements, optical microscopy, spatially resolved infrared spectroscopy, and scanning Kelvin probe microscopy are used to investigate the drift of dopants. Dopant mobilities of 10-9 to 10-8 cm2 V-1 s-1 are estimated. This drift over several micrometers is reversible and can be controlled. Furthermore, this study presents a novel memory device to illustrate the applicability of this effect. The results emphasize the importance of dynamic processes under operating conditions that must be considered even for single doped layers.

14.
Chem Rev ; 117(7): 5110-5145, 2017 Apr 12.
Article in English | MEDLINE | ID: mdl-28358482

ABSTRACT

Infrared spectroscopy is a powerful tool widely used in research and industry for a label-free and unambiguous identification of molecular species. Inconveniently, its application to spectroscopic analysis of minute amounts of materials, for example, in sensing applications, is hampered by the low infrared absorption cross-sections. Surface-enhanced infrared spectroscopy using resonant metal nanoantennas, or short "resonant SEIRA", overcomes this limitation. Resonantly excited, such metal nanostructures feature collective oscillations of electrons (plasmons), providing huge electromagnetic fields on the nanometer scale. Infrared vibrations of molecules located in these fields are enhanced by orders of magnitude enabling a spectroscopic characterization with unprecedented sensitivity. In this Review, we introduce the concept of resonant SEIRA and discuss the underlying physics, particularly, the resonant coupling between molecular and antenna excitations as well as the spatial extent of the enhancement and its scaling with frequency. On the basis of these fundamentals, different routes to maximize the SEIRA enhancement are reviewed including the choice of nanostructures geometries, arrangements, and materials. Furthermore, first applications such as the detection of proteins, the monitoring of dynamic processes, and hyperspectral infrared chemical imaging are discussed, demonstrating the sensitivity and broad applicability of resonant SEIRA.

15.
Analyst ; 142(8): 1235-1243, 2017 Apr 10.
Article in English | MEDLINE | ID: mdl-27918009

ABSTRACT

The optical properties of skin in the mid-infrared range are not known, despite their importance for e.g. non-invasive glucose monitoring. In this paper, transmission, absorption, scattering, and reduced scattering coefficients are quantified using a custom-built goniometer based on a quantum cascade laser operated at the glucose absorption band at a wavelength of around 9.7 µm. The measurements show a strong dominance of absorption and moderate contributions from scattering. The scattered radiation is dominated by single scattering events in the forward direction (g = 0.967) within the range of the investigated dermis layer thicknesses of up to 50 µm, whereby the fraction of multiple scattering is expected to increase with the layer thickness.


Subject(s)
Dermis/diagnostic imaging , Glucose/chemistry , Scattering, Radiation , Spectroscopy, Near-Infrared , Animals , Lasers, Semiconductor , Swine
16.
Opt Express ; 24(22): 25528-25539, 2016 Oct 31.
Article in English | MEDLINE | ID: mdl-27828491

ABSTRACT

We perform far-field spectroscopy of infrared metal antennas on silicon oxide layers of different thickness, where we find a splitting of the plasmonic resonance. This splitting can result in a transparency window, corresponding to suppression of antenna scattering, respectively "cloaking" of the antenna. Backed up by theory, we show that this effect is caused by strong coupling between the metal antenna plasmons and the surface phonon polaritons in the oxide layer. The effect is a kind of induced transparency in which the strength of the phonon-polariton field plays the crucial role. It represents a further tuning possibility for the optical performance of infrared devices.

17.
ACS Appl Mater Interfaces ; 8(7): 4940-5, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26829619

ABSTRACT

Multilayer solution-processed devices in organic electronics show the tendency of intermixing of subsequently deposited layers. Here, we synthesize naphthalene tetracarboxydiimide (NDI)-based n-type semiconducting polymers with thermally cleavable side chains which upon removal render the polymer insoluble. Infrared and photoelectron spectroscopy were performed to investigate the pyrolysis process. Characterization of organic field-effect transistors provides insight into charge transport. After the pyrolysis homogeneous films could be produced which are insoluble in the primary solvent. By varying curing temperature and time we show that these process parameters govern the amount of side chains in the film and influence the device performance.

18.
J Biophotonics ; 9(1-2): 61-6, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26572683

ABSTRACT

The speed and efficiency of quantum cascade laser-based mid-infrared microspectroscopy are demonstrated using two different model organisms as examples. For the slowly moving Amoeba proteus, a quantum cascade laser is tuned over the wavelength range of 7.6 µm to 8.6 µm (wavenumbers 1320 cm(-1) and 1160 cm(-1) , respectively). The recording of a hyperspectral image takes 11.3 s whereby an average signal-to-noise ratio of 29 is achieved. The limits of time resolution are tested by imaging the fast moving Caenorhabditis elegans at a discrete wavenumber of 1265 cm(-1) . Mid-infrared imaging is performed with the 640 × 480 pixel video graphics array (VGA) standard and at a full-frame time resolution of 0.02 s (i.e. well above the most common frame rate standards). An average signal-to-noise ratio of 16 is obtained. To the best of our knowledge, these findings constitute the first mid-infrared imaging of living organisms at VGA standard and video frame rate.


Subject(s)
Amoeba , Caenorhabditis elegans , Infrared Rays , Optical Imaging/methods , Animals , Lasers , Time Factors
19.
J Phys Chem Lett ; 6(15): 2913-8, 2015 Aug 06.
Article in English | MEDLINE | ID: mdl-26267180

ABSTRACT

The organic cation and its interplay with the inorganic lattice underlie the exceptional optoelectronic properties of organo-metallic halide perovskites. Herein we report high-quality infrared spectroscopic measurements of methylammonium lead halide perovskite (CH3NH3Pb(I/Br/Cl)3) films and single crystals at room temperature, from which the dielectric function in the investigated spectral range is derived. Comparison with electronic structure calculations in vacuum of the free methylammonium cation allows for a detailed peak assignment. We analyze the shifts of the vibrational peak positions between the different halides and infer the extent of interaction between organic moiety and the surrounding inorganic cage. The positions of the NH3(+) stretching vibrations point to significant hydrogen bonding between the methylammonium and the halides for all three perovskites.

20.
Langmuir ; 31(37): 10303-9, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26315142

ABSTRACT

In this work we examine small conjugated molecules bearing a thiol headgroup as self assembled monolayers (SAM). Functional groups in the SAM-active molecule shift the work function of gold to n-channel semiconductor regimes and improve the wettability of the surface. We examine the effect of the presence of methylene linkers on the orientation of the molecule within the SAM. 3,4,5-Trimethoxythiophenol (TMP-SH) and 3,4,5-trimethoxybenzylthiol (TMP-CH2-SH) were first subjected to computational analysis, predicting work function shifts of -430 and -310 meV. Contact angle measurements show an increase in the wetting envelope compared to that of pristine gold. Infrared (IR) measurements show tilt angles of 22 and 63°, with the methylene-linked molecule (TMP-CH2-SH) attaining a flatter orientation. The actual work function shift as measured with photoemission spectroscopy (XPS/UPS) is even larger, -600 and -430 meV, respectively. The contact resistance between gold electrodes and poly[N,N'-bis(2-octyldodecyl)-naphthalene-1,4:5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene) (Polyera Aktive Ink, N2200) in n-type OFETs is demonstrated to decrease by 3 orders of magnitude due to the use of TMP-SH and TMP-CH2-SH. The effective mobility was enhanced by two orders of magnitude, significantly decreasing the contact resistance to match the mobilities reported for N2200 with optimized electrodes.

SELECTION OF CITATIONS
SEARCH DETAIL
...