Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med ; 55: 1-7, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30471813

ABSTRACT

The aim of this study was to implement an outlier marking and analysis methodology to optimize CT examination protocols. CT Head examination data, including dose metrics along with technical parameters, were stored in an automatic dose registry system. Reference dose metrics distribution was obtained throughout a 1-year period. Outlier thresholds were calculated taking into account the specific shape of the distribution, by using a robust measure of the skewness; the medcouple parameter. Subsequently, outliers from a 4-month period were marked and Cause-and-Effect analysis was carried out by a multidisciplinary dose committee. Reference Dose metrics distributions were obtained from 3690 CT Head examinations. Both CTDIvol and DLP showed a certain degree of skewness, with a medcouple value of 0.05 and 0.11, respectively. All of the upper-outliers fell within 3 identifiable groups of causes, ordered by relative importance: i) inadequate protocol selection, ii) arms or objects in the field-of-view, and iii) abnormal scanning region diameter. Regarding the lower-outliers, 90% were attributable to the inclusion of additional series in the original head protocol and the remaining 10% to unknown causes. Also, a general Cause-and-Effect diagram for outliers was elaborated. While the Dose Reference Level method applies to the general performance of a CT protocol and allows comparison with other centers, the outlier method represents a step further in the optimization process. The proposed method focuses on detecting incorrect utilization of the CT, which mainly arises from inadequate knowledge of CT technology.


Subject(s)
Tomography, X-Ray Computed/methods , Humans , Phantoms, Imaging , Radiation Dosage
2.
J Med Phys ; 42(3): 133-139, 2017.
Article in English | MEDLINE | ID: mdl-28974858

ABSTRACT

INTRODUCTION: The aim of this work is to verify the use of radiochromic film in the quality assurance (QA) of volumetric-modulated arc therapy (VMAT) lung stereotactic body radiation therapy (SBRT) plans and compare the results with those obtained using an ion chamber array. MATERIALS AND METHODS: QA was performed for 14 plans using a two-dimensional-array seven29 and EBT3 film. Dose values per session ranged between 7.5 Gy and 18 Gy. The multichannel method was used to obtain a dose map for film. RESULTS: The results obtained were compared with treatment planning system calculated profiles through gamma analysis. Passing criteria were 3%/3 mm, 2%/2 mm and 3%/1.5 mm with maximum and local dose (LD) normalization. Mean gamma passing rate (GPR) (percentage of points presenting a gamma function value of <1) was obtained and compared. Calibration curves were obtained for each color channel within the dose range 0-16 Gy. Mean GPR values for film were >98.9% for all criteria when normalizing per maximum dose. When using LD, normalization was >92.7%. GPR values for the array were lower for all criteria; this difference being statistically significant when normalizing at LD, reaching 12% for the 3%/1.5 mm criterion. CONCLUSION: Both detectors provide satisfactory results for the QA of plans for VMAT lung SBRT. The film provided greater mean GPR values, afforded greater spatial resolution and was more efficient overall.

3.
Phys Med ; 31(3): 293-6, 2015 May.
Article in English | MEDLINE | ID: mdl-25703035

ABSTRACT

PURPOSE: To study the influence of Multileaf Collimator (MLC) leaf width in radiosurgery treatment planning for Volumetric Modulated Arc Therapy (VMAT) and 3D Dynamic Conformal Arc Therapy (3D-DCA). MATERIAL AND METHODS: 16 patients with solitary brain metastases treated with radiosurgery via the non-coplanar VMAT were replanned for the 3D-DCA. For each planning technique two MLC leaf width sizes were utilized, i.e. 5 mm and 2.5 mm. These treatment plans were compared using dosimetric indices (conformity, gradient and mean dose for brain tissue) and the normal tissue complication probability (NTCP). RESULTS: An improvement in planning quality for VMAT was observed versus 3D-DCA for any MLC leaf width, mainly with regards to dose conformity and to a lesser extent regards dose gradient. No significant difference was observed for any of both techniques using smaller leaf width. However, dose gradient was improved in favor of the 2.5 mm MLC for either of both techniques (15% VMAT and 10% 3D-DCA); being noticeable for lesions smaller than 10cm(3). Nonetheless, the NTCP index was not significantly affected by variations in the dose gradient index. CONCLUSIONS: This, our present study, suggests that the use of an MLC leaf width of 2.5 mm via the noncoplanar VMAT and 3D-DCA techniques provides improvement in terms of dose gradient for small volumes, over those results obtained with an MLC leaf width of 5 mm. The 3D-DCA does also benefit from MLC leaf widths of a smaller size, mainly in terms of conformity.


Subject(s)
Radiosurgery/methods , Radiotherapy, Intensity-Modulated/methods , Brain Neoplasms/radiotherapy , Brain Neoplasms/secondary , Brain Neoplasms/surgery , Humans , Radiometry , Radiosurgery/instrumentation , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated/instrumentation
4.
J Med Phys ; 39(4): 219-24, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25525309

ABSTRACT

It is widely accepted that a redundant independent dose calculation (RIDC) must be included in any treatment planning verification procedure. Specifically, volumetric modulated arc therapy (VMAT) technique implies a comprehensive quality assurance (QA) program in which RIDC should be included. In this paper, the results obtained in 1 year of clinical experience are presented. Eclipse from Varian is the treatment planning system (TPS), here in use. RIDC were performed with the commercial software; Diamond(®) (PTW) which is capable of calculating VMAT fields. Once the plan is clinically accepted, it is exported via Digital Imaging and Communications in Medicine (DICOM) to RIDC, together with the body contour, and then a point dose calculation is performed, usually at the isocenter. A total of 459 plans were evaluated. The total average deviation was -0.3 ± 1.8% (one standard deviation (1SD)). For higher clearance the plans were grouped by location in: Prostate, pelvis, abdomen, chest, head and neck, brain, stereotactic radiosurgery, lung stereotactic body radiation therapy, and miscellaneous. The highest absolute deviation was -0.8 ± 1.5% corresponding to the prostate. A linear fit between doses calculated by RIDC and by TPS produced a correlation coefficient of 0.9991 and a slope of 1.0023. These results are very close to those obtained in the validation process. This agreement led us to consider this RIDC software as a valuable tool for QA in VMAT plans.

5.
Med Dosim ; 38(3): 274-9, 2013.
Article in English | MEDLINE | ID: mdl-23540493

ABSTRACT

Quality assurance (QA) of volumetric modulated arc therapy (VMAT) increases the workload significantly. We compared the results from 4 verification methods to establish an efficient VMAT QA. Planning for VMAT treatments was carried out for 40 consecutive patients. Pretreatment verifications were carried out with ion chamber array Physikalish-Technische Werkstätten (PTW729), electronic portal dosimetry (EPID), ion chamber measurements, and independent dose calculation with Diamond program. 2D analyses were made using the gamma analysis (3mm distance to agreement and 3% dose difference relative to maximum, 10% dose threshold). Average point dose difference calculated by Eclipse relative to ion chamber measurements and Diamond were 0.1%±0.9% and 0.6%±2.2%, respectively. Average pass rate for PTW729 was 99.2%±1.9% and 98.3%±1.3% for EPID. The total required time (linac occupancy time given in parentheses) for each QA method was: PTW729 43.5 minutes (26.5 minutes), EPID 14.5 minutes (2.5 minutes), ion chamber 34.5 minutes (26.5 minutes), and Diamond 12.0 minutes (0 minute). The results were consistent and allowed us to establish an optimized protocol, considering safety and accuracy as well as workload, consisting of 2 verification methods: EPID 2D analysis and independent dose calculation.


Subject(s)
Neoplasms/radiotherapy , Radiotherapy, Intensity-Modulated/methods , Humans , Quality Assurance, Health Care , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/standards , Time Factors
6.
Int J Radiat Oncol Biol Phys ; 62(2): 579-84, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15890603

ABSTRACT

PURPOSE: To obtain the absolute dose-rate distribution in liquid water for all six cup-shaped Leipzig applicators by means of an experimentally validated Monte Carlo (MC) code. These six applicators were used in high-dose-rate (HDR) afterloaders with the "classic" and v2 (192)Ir sources. The applicators have an inner diameter of 1, 2, and 3 cm, with the source traveling parallel or perpendicular to the contact surface. METHODS AND MATERIALS: The MC GEANT4 code was used to obtain the dose-rate distribution in liquid water for the six applicators and the two HDR source models. To normalize the applicator output factors, a MC simulation for the "classic" and v2 sources in air was performed to estimate the air-kerma strength. To validate this specific application and to guarantee that realistic source-applicator geometry was considered, an experimental verification procedure was implemented in this study, in accordance with the TG43U1 recommendations. Thermolumniscent dosimeter chips and a parallel plate ionization chamber in a polymethyl methacrylate (PMMA) phantom were used to verify the MC results for the six applicators in a microSelectronHDR afterloader with the "classic" source. Dose-rate distributions dependence on phantom size has been evaluated using two different phantom sizes. RESULTS: Percentage depth dose and off-axis profiles were obtained normalized at a depth of 3 mm along the central axis for both phantom sizes. A table of output factors, normalized to 1 U of source kerma strength at this depth, is presented. The dose measured in the PMMA phantom agrees within experimental uncertainties with the dose obtained by the MC GEANT4 code calculations. The phantom size influence on dose-rate distributions becomes significant at depths greater than 5 cm. CONCLUSIONS: MC-detailed simulation was performed for the Nucletron Leipzig HDR applicators. The matrix data obtained, with a grid separation of 0.5 mm, can be used to build a dataset in a convenient format to model these distributions for routine use with a brachytherapy treatment planning system.


Subject(s)
Brachytherapy/instrumentation , Iridium Radioisotopes/therapeutic use , Monte Carlo Method , Phantoms, Imaging , Radiotherapy Dosage , Thermoluminescent Dosimetry , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...