Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 745: 140917, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-32726704

ABSTRACT

Many temperate grasslands are used for dairying, and ongoing research aims to better understand these systems in order to increase animal production and soil organic carbon (SOC) stocks. However, it is difficult to fully understand management effects on SOC because most changes are slow and difficult to distinguish from natural variability, even if changes are important over years to decades. Eddy covariance (EC) measurements can overcome this problem by continuously measuring net carbon exchange from pastures, but net balances are very sensitive to even small systematic measurement errors. Combining EC measurements with detailed process-based modelling can reduce the risks inherent in total reliance on EC measurements. Modelling can also reveal information about the underlying processes that drive observed fluxes. Here, we describe carbon exchange patterns of five paddocks situated at four different locations in New Zealand and France where EC data and detailed physiological modelling were available. The work showed that respiration by grazing animals was often only incompletely captured in EC measurements. This was most problematic when fluxes were based on gap-filling, which could have estimated incorrect fluxes during grazing periods based on observations from periods without grazing. We then aimed to extract plant physiological insights from these studies. We found appreciable carbon uptake rates even at temperatures below 0 °C. After grazing, carbon uptake was reduced for up to 2 weeks. This reduction was larger than expected from reduced leaf area after grazing, but the factors contributing to that difference have not yet been identified. Detailed physiological models can also extrapolate findings to new management regimes, environmental conditions or plant attributes. This overcomes the limitation of experimental studies, which are necessarily restricted to actual site and weather conditions allowing models to make further progress on predicting management effects on SOC.

2.
Sci Total Environ ; 577: 61-72, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27751689

ABSTRACT

A possible agricultural climate change mitigation option is to increase the amount of soil organic carbon (SOC). Conversely, some factors might lead to inadvertent losses of SOC. Here, we explore the effect of various management options and environmental changes on SOC storage and milk production of dairy pastures in New Zealand. We used CenW 4.1, a process-based ecophysiological model, to run a range of scenarios to assess the effects of changes in management options, plant properties and environmental factors on SOC and milk production. We tested the model by using 2years of observations of the exchanges of water and CO2 measured with an eddy covariance system on a dairy farm in New Zealand's Waikato region. We obtained excellent agreement between the model and observations, especially for evapotranspiration and net photosynthesis. For the scenario analysis, we found that SOC could be increased through supplying supplemental feed, increasing fertiliser application, or increasing water availability through irrigation on very dry sites, but SOC decreased again for larger increases in water availability. Soil warming strongly reduced SOC. For other changes in key properties, such as changes in soil water-holding capacity and plant root:shoot ratios, SOC changes were often negatively correlated with changes in milk production. The work showed that changes in SOC were determined by the complex interplay between (1) changes in net primary production; (2) the carbon fraction taken off-site through grazing; (3) carbon allocation within the system between labile and stabilised SOC; and (4) changes in SOC decomposition rates. There is a particularly important trade-off between carbon either being removed by grazing or remaining on site and available for SOC formation. Changes in SOC cannot be fully understood unless all four factors are considered together in an overall assessment.


Subject(s)
Carbon Sequestration , Carbon , Dairying , Milk , Animals , Climate Change , New Zealand , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...