Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(49): e2209955119, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36459653

ABSTRACT

From molecules and particles to macroscopic surfaces immersed in fluids, chemical reactions often endow interfaces with electrical charge which in turn governs surface interactions and interfacial phenomena. The ability to measure the electrical properties of a material immersed in any solvent, as well as to monitor the spatial heterogeneity and temporal variation thereof, has been a long-standing challenge. Here, we describe an optical microscopy-based approach to probe the surface charge distribution of a range of materials, including inorganic oxide, polymer, and polyelectrolyte films, in contact with a fluid. The method relies on optical visualization of the electrical repulsion between diffusing charged probe molecules and the unknown surface to be characterized. Rapid image-based measurements enable us to further determine isoelectric points of the material as well as properties of its ionizable chemical groups. We further demonstrate the ability to optically monitor chemically triggered surface charge changes with millisecond time resolution. Finally, we present a scanning-surface probe technique capable of diffraction-limited imaging of spatial heterogeneities in chemical composition and charge over large areas. This technique will enable facile characterization of the solid-liquid interface with wide-ranging relevance across application areas from biology to engineering.

2.
ACS Nano ; 12(9): 9451-9460, 2018 Sep 25.
Article in English | MEDLINE | ID: mdl-30114902

ABSTRACT

Graphene tunnel junctions are a promising experimental platform for single molecule electronics and biosensing. Ultimately their noise properties will play a critical role in developing these applications. Here we report a study of electrical noise in graphene tunnel junctions fabricated through feedback-controlled electroburning. We observe random telegraph signals characterized by a Lorentzian noise spectrum at cryogenic temperatures (77 K) and a 1/ f noise spectrum at room temperature. To gain insight into the origin of these noise features, we introduce a theoretical model that couples a quantum mechanical tunnel barrier to one or more classical fluctuators. The fluctuators are identified as charge traps in the underlying dielectric, which through random fluctuations in their occupation introduce time-dependent modulations in the electrostatic environment that shift the potential barrier of the junction. Analysis of the experimental results and the tight-binding model indicate that the random trap occupation is governed by Poisson statistics. In the 35 devices measured at room temperature, we observe a 20-60% time-dependent variance of the current, which can be attributed to a relative potential barrier shift of between 6% and 10%. In 10 devices measured at 77 K, we observe a 10% time-dependent variance of the current, which can be attributed to a relative potential barrier shift of between 3% and 4%. Our measurements reveal a high sensitivity of the graphene tunnel junctions to their local electrostatic environment, with observable features of intertrap Coulomb interactions in the distribution of current switching amplitudes.

3.
Nat Mater ; 13(6): 624-30, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24747780

ABSTRACT

To progress from the laboratory to commercial applications, it will be necessary to develop industrially scalable methods to produce large quantities of defect-free graphene. Here we show that high-shear mixing of graphite in suitable stabilizing liquids results in large-scale exfoliation to give dispersions of graphene nanosheets. X-ray photoelectron spectroscopy and Raman spectroscopy show the exfoliated flakes to be unoxidized and free of basal-plane defects. We have developed a simple model that shows exfoliation to occur once the local shear rate exceeds 10(4) s(-1). By fully characterizing the scaling behaviour of the graphene production rate, we show that exfoliation can be achieved in liquid volumes from hundreds of millilitres up to hundreds of litres and beyond. The graphene produced by this method performs well in applications from composites to conductive coatings. This method can be applied to exfoliate BN, MoS2 and a range of other layered crystals.

SELECTION OF CITATIONS
SEARCH DETAIL
...