Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Mater ; 17(4): 318-322, 2018 04.
Article in English | MEDLINE | ID: mdl-29531368

ABSTRACT

There is a demand for the manufacture of two-dimensional (2D) materials with high-quality single crystals of large size. Usually, epitaxial growth is considered the method of choice 1 in preparing single-crystalline thin films, but it requires single-crystal substrates for deposition. Here we present a different approach and report the synthesis of single-crystal-like monolayer graphene films on polycrystalline substrates. The technological realization of the proposed method resembles the Czochralski process and is based on the evolutionary selection 2 approach, which is now realized in 2D geometry. The method relies on 'self-selection' of the fastest-growing domain orientation, which eventually overwhelms the slower-growing domains and yields a single-crystal continuous 2D film. Here we have used it to synthesize foot-long graphene films at rates up to 2.5 cm h-1 that possess the quality of a single crystal. We anticipate that the proposed approach could be readily adopted for the synthesis of other 2D materials and heterostructures.

2.
Nanotechnology ; 28(47): 475202, 2017 Nov 24.
Article in English | MEDLINE | ID: mdl-28718775

ABSTRACT

In this paper, high performance top-gated WSe2 field effect transistor (FET) devices are demonstrated via a two-step remote plasma assisted ALD process. High-quality, low-leakage aluminum oxide (Al2O3) gate dielectric layers are deposited onto the WSe2 channel using a remote plasma assisted ALD process with an ultrathin (∼1 nm) titanium buffer layer. The first few nanometers (∼2 nm) of the Al2O3 dielectric film is deposited at relatively low temperature (i.e. 50 °C) and remainder of the film is deposited at 150 °C to ensure the conformal coating of Al2O3 on the WSe2 surface. Additionally, an ultra-thin titanium buffer layer is introduced at the WSe2 channel surface prior to ALD process to mitigate oxygen plasma induced doping effects. Excellent device characteristics with current on-off ratio in excess of 106 and a field effect mobility as high as 70.1 cm2 V-1 s-1 are achieved in a few-layer WSe2 FET device with a 30 nm Al2O3 top-gate dielectric. With further investigation and careful optimization, this method can play an important role for the realization of high performance top gated FETs for future optoelectronic device applications.

3.
Sci Rep ; 6: 27276, 2016 06 06.
Article in English | MEDLINE | ID: mdl-27263472

ABSTRACT

Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe2 thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe2 is degraded more severely relative to electron transport after helium ion irradiation. Furthermore, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices.

4.
ACS Appl Mater Interfaces ; 6(17): 15472-9, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-25137194

ABSTRACT

In recent years, there has been considerable interest in the use of plasmons, that is, free electron oscillations in conductors, to boost the performance of both organic and inorganic thin film solar cells. This has been driven by the possibility of employing thin active layers in solar cells in order to reduce materials costs, and is enabled by significant advances in fabrication technology. The ability of surface plasmons in metallic nanostructures to guide and confine light in the nanometer scale has opened up new design possibilities for solar cell devices. Here, we report the synthesis and characterization of highly monodisperse, reasonably stable, multipode Au/Ag bimetallic nanostructures using an inorganic additive as a ligand for photovoltaic applications. A promising surface enhanced Raman scattering (SERS) effect has been observed for the synthesized bimetallic Au/Ag multispiked nanoparticles, which compare favorably well with their Au and Ag spherical nanoparticle counterparts. The synthesized plasmonic nanostructures were incorporated on the rear surface of an ultrathin planar c-silicon/organic polymer hybrid solar cell, and the overall effect on photovoltaic performance was investigated. A promising enhancement in solar cell performance parameters, including both the open circuit voltage (VOC) and short circuit current density (JSC), has been observed by employing the aforementioned bimetallic multispiked nanoparticles on the rear surface of solar cell devices. A power conversion efficiency (PCE) value as high as 7.70% has been measured in a hybrid device with Au/Ag multispiked nanoparticles on the rear surface of an ultrathin, crystalline silicon (c-Si) membrane (∼ 12 µm). This value compares well to the measured PCE value of 6.72% for a similar device without nanoparticles. The experimental observations support the hope for a sizable PCE increase, due to plasmon effects, in thin-film, c-Si solar cells in the near future.

5.
ACS Appl Mater Interfaces ; 6(6): 4356-63, 2014 Mar 26.
Article in English | MEDLINE | ID: mdl-24568116

ABSTRACT

Recently, free-standing, ultrathin, single-crystal silicon (c-Si) membranes have attracted considerable attention as a suitable material for low-cost, mechanically flexible electronics. In this paper, we report a promising ultrathin, flexible, hybrid solar cell based on silicon nanowire (SiNW) arrays and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The free-standing, ultrathin c-Si membranes of different thicknesses were produced by KOH etching of double-side-polished silicon wafers for various etching times. The processed free-standing silicon membranes were observed to be mechanically flexible, and in spite of their relatively small thickness, the samples tolerated the different steps of solar cell fabrication, including surface nanotexturization, spin-casting, dielectric film deposition, and metallization. However, in terms of the optical performance, ultrathin c-Si membranes suffer from noticeable transmission losses, especially in the long-wavelength region. We describe the experimental performance of a promising light-trapping scheme in the aforementioned ultrathin c-Si membranes of thicknesses as small as 5.7 µm employing front-surface random SiNW texturization in combination with a back-surface distribution of silver (Ag) nanoparticles (NPs). We report the enhancement of both the short-circuit current density (JSC) and the open-circuit voltage (VOC) that has been achieved in the described devices. Such enhancement is attributable to the plasmonic backscattering effect of the back-surface Ag NPs, which led to an overall 10% increase in the power conversion efficiency (PCE) of the devices compared to similar structures without Ag NPs. A PCE in excess of 6.62% has been achieved in the described devices having a c-Si membrane of thickness 8.6 µm. The described device technology could prove crucial in achieving an efficient, low-cost, mechanically flexible photovoltaic device in the near future.

6.
ACS Appl Mater Interfaces ; 5(19): 9620-7, 2013 Oct 09.
Article in English | MEDLINE | ID: mdl-24032746

ABSTRACT

Recently, inorganic/organic hybrid solar cells have been considered as a viable alternative for low-cost photovoltaic devices because the Schottky junction between inorganic and organic materials can be formed employing low temperature processing methods. We present an efficient hybrid solar cell based on highly ordered silicon nanopillars (SiNPs) and poly(3,4-ethylene-dioxythiophene):polystyrenesulfonate (PEDOT:PSS). The proposed device is formed by spin coating the organic polymer PEDOT:PSS on a SiNP array fabricated using metal assisted electroless chemical etching process. The characteristics of the hybrid solar cells are investigated as a function of SiNP height. A maximum power conversion efficiency (PCE) of 9.65% has been achieved for an optimized SiNP array hybrid solar cell with nanopillar height of 400 nm, despite the absence of a back surface field enhancement. The effect of an ultrathin atomic layer deposition (ALD), grown aluminum oxide (Al2O3), as a passivation layer (recombination barrier) has also been studied for the enhanced electrical performance of the device. With the inclusion of the ultrathin ALD deposited Al2O3 between the SiNP array textured surface and the PEDOT:PSS layer, the PCE of the fabricated device was observed to increase to 10.56%, which is ∼10% greater than the corresponding device without the Al2O3 layer. The device described herein is considered to be promising toward the realization of a low-cost, high-efficiency inorganic/organic hybrid solar cell.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/chemistry , Polymers/chemistry , Polystyrenes/chemistry , Silicon/chemistry , Solar Energy , Aluminum Oxide/chemistry , Electric Power Supplies , Electrodes , Nanostructures/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...