Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Mar Drugs ; 22(3)2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38535460

ABSTRACT

The genus Gambierdiscus produces an array of bioactive hydrophilic and lipophilic secondary metabolites that range in mode of action and toxicity. In this study, the metabolite fingerprint was mapped for thirteen Gambierdiscus, five Coolia and two Fukuyoa species (34 isolates) by assessing the production of 56 characterised secondary metabolites. Gambierdiscus polynesiensis was the only species to produce Pacific-ciguatoxin-3B (P-CTX3B), P-CTX3C, iso-P-CTX3B/C, P-CTX4A, P-CTX4B and iso-P-CTX4A/B. G. australes produced maitotoxin-1 (MTX-1) and MTX-5, G. cheloniae produced MTX-6 and G. honu produced MTX-7. Ubiquitous production of 44-methylgambierone was observed amongst all the Gambierdiscus isolates, with nine species also producing gambierone. Additional gambierone analogues, including anhydrogambierone (tentatively described herein), were also detected in all Gambierdiscus species, two Coolia and two Fukuyoa species. Gambieroxide was detected in G. lewisii and G. pacificus and gambieric acid A was detected in ten Gambierdiscus species, with G. australes (CAWD381) being the only isolate to produce gambieric acids A-D. This study has demonstrated that the isolates tested to date produce the known CTXs or MTXs, but not both, and highlighted several species that produced 'unknown' compounds displaying characteristics of cyclic polyethers, which will be the focus of future compound discovery efforts.


Subject(s)
Ciguatoxins , Dinoflagellida , Ethers , Serogroup
2.
Harmful Algae ; 127: 102481, 2023 08.
Article in English | MEDLINE | ID: mdl-37544666

ABSTRACT

Cyanobacterial blooms are increasing in frequency and intensity globally, impacting lake ecosystem health and posing a risk to human and animal health due to the toxins they can produce. Cyanobacterial pigments preserved in lake sediments provide a useful means of understanding the changes that have led to cyanobacterial blooms in lakes. However, there is some uncertainty as to whether specific carotenoids are unique to certain genera or types of cyanobacteria. To fill this knowledge gap, we analyzed pigments in 34 cyanobacteria cultures and applied the findings to sediments from three New Zealand lakes. The cyanobacterial carotenoids canthaxanthin, echinenone and zeaxanthin were detected in all cultures, whereas myxoxanthophyll was only detected in ten cultures (Microcoleus, Planktothrix and the picocyanobacteria cultures; Synechococcaceae). The sum of the individual carotenoid concentrations provided the strongest relationship with cyanobacterial biomass (R2 = 0.58) and could be used in paleolimnology studies to evaluate general cyanobacterial abundance. Ratios of canthaxanthin, zeaxanthin and myxoxanthophyll relative to echinenone indicated that carotenoid ratios could be used to differentiate picocyanobacteria and bloom-forming cyanobacteria, to some degree. High zeaxanthin/echinenone ratios were measured in picocyanobacteria and low zeaxanthin/echinenone ratios were measured in bloom-forming cyanobacteria. The zeaxanthin/echinenone ratio was applied to sediment core samples where the cyanobacterial community was also evaluated by 16S rRNA gene metabarcoding, with the zeaxanthin/echinenone ratios showing similar patterns to those observed in the cultures. The preliminary assessment described here suggests that zeaxanthin/echinenone ratios could provide a valuable paleoecological proxy for evaluating historical shifts in cyanobacterial communities and warrants further exploration.


Subject(s)
Canthaxanthin , Cyanobacteria , Animals , Humans , Zeaxanthins , RNA, Ribosomal, 16S/genetics , Ecosystem , Carotenoids , Cyanobacteria/genetics
3.
Harmful Algae ; 125: 102432, 2023 06.
Article in English | MEDLINE | ID: mdl-37220985

ABSTRACT

Remote sensing using satellite imagery has been promoted as a method to broaden the scale and frequency of cyanobacterial monitoring. This relies on the ability to establish relationships between the reflectance spectra of water bodies and the abundance of cyanobacteria. A challenge to achieving this comes from a limited understanding of the extent to which the optical properties of cyanobacteria vary according to their physiological state and growth environment. The aim of the present study was to determine how growth stage, nutrient status and irradiance affect pigment concentrations and absorption spectra in two common bloom forming cyanobacterial taxa: Dolichospermum lemmermannii and Microcystis aeruginosa. Each species was grown in laboratory batch culture under a full factorial design of low or high light intensity and low, medium, or high nitrate concentrations. Absorption spectra, pigment concentrations and cell density were measured throughout the growth phases. The absorption spectra were all highly distinguishable from each other, with greater interspecific than intraspecific differences, indicating that both D. lemmermannii and M. aeruginosa can be readily differentiated using hyperspectral absorption spectra. Despite this, each species exhibited different responses in the per-cell pigment concentrations with varying light intensity and nitrate exposure. Variability among treatments was considerably higher in D. lemmermannii than in M. aeruginosa, which exhibited smaller changes in pigment concentrations among the treatments. These results highlight the need to understand the physiology of the cyanobacteria and to take caution when estimating biovolumes from reflectance spectra when species composition and growth stage are unknown.


Subject(s)
Cyanobacteria , Microcystis , Nitrates , Nutrients , Batch Cell Culture Techniques
4.
Environ Sci Technol ; 56(23): 16940-16951, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36379054

ABSTRACT

Interactions among multiple stressors, legacies of past perturbations, and the lack of historical information make it difficult to determine the influence of individual anthropogenic impacts on lakes and separate them from natural ecosystem variability. In the present study, we coupled paleolimnological approaches, historical data, and ecological experiments to disentangle the impacts of multiple long-term stressors on lake ecosystem structure and function. We found that the lake structure and function remained resistant to the impacts of catchment deforestation and erosion, and the introduction of several exotic fish species. Changes in ecosystem structure and function were consistent, with nutrient enrichment being the primary driver of change. Significant and sustained changes in the lake diatom community structure (and their nutrient requirements), bacterial community function, and paleolimnological proxies of ecosystem function coincided with nitrogen and phosphorus fertilizers in the catchment. The results highlight that the effects of increased nutrient inputs are much stronger than the influence of other, potentially significant, drivers of ecosystem change, and that the degree of nutrient impact can be underestimated by environmental monitoring due to its diffuse and accumulative nature. Delineating the effects of multiple anthropogenic drivers requires long-term records of both impacts and lake ecosystem change across multiple trophic levels.


Subject(s)
Ecosystem , Lakes , Animals , Lakes/chemistry , Anthropogenic Effects , Phosphorus , Nutrients
5.
Mar Drugs ; 20(7)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35877746

ABSTRACT

Identifying compounds responsible for the observed toxicity of the Gambierdiscus species is a critical step to ascertaining whether they contribute to ciguatera poisoning. Macroalgae samples were collected during research expeditions to Rarotonga (Cook Islands) and North Meyer Island (Kermadec Islands), from which two new Gambierdiscus species were characterized, G. cheloniae CAWD232 and G. honu CAWD242. Previous chemical and toxicological investigations of these species demonstrated that they did not produce the routinely monitored Pacific ciguatoxins nor maitotoxin-1 (MTX-1), yet were highly toxic to mice via intraperitoneal (i.p.) injection. Bioassay-guided fractionation of methanolic extracts, incorporating wet chemistry and chromatographic techniques, was used to isolate two new MTX analogs; MTX-6 from G. cheloniae CAWD232 and MTX-7 from G. honu CAWD242. Structural characterization of the new MTX analogs used a combination of analytical chemistry techniques, including LC-MS, LC-MS/MS, HR-MS, oxidative cleavage and reduction, and NMR spectroscopy. A substantial portion of the MTX-7 structure was elucidated, and (to a lesser extent) that of MTX-6. Key differences from MTX-1 included monosulfation, additional hydroxyl groups, an extra double bond, and in the case of MTX-7, an additional methyl group. To date, this is the most extensive structural characterization performed on an MTX analog since the complete structure of MTX-1 was published in 1993. MTX-7 was extremely toxic to mice via i.p. injection (LD50 of 0.235 µg/kg), although no toxicity was observed at the highest dose rate via oral administration (155.8 µg/kg). Future research is required to investigate the bioaccumulation and likely biotransformation of the MTX analogs in the marine food web.


Subject(s)
Ciguatera Poisoning , Ciguatoxins , Dinoflagellida , Oxocins , Animals , Chromatography, Liquid , Dinoflagellida/chemistry , Marine Toxins , Mice , Oxocins/analysis , Tandem Mass Spectrometry
6.
Microorganisms ; 10(2)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35208733

ABSTRACT

Understanding the historical onset of cyanobacterial blooms in freshwater bodies can help identify their potential drivers. Lake sediments are historical archives, containing information on what has occurred in and around lakes over time. Paleolimnology explores these records using a variety of techniques, but choosing the most appropriate method can be challenging. We compared results obtained from a droplet digital PCR assay targeting a cyanobacterial-specific region of the 16S rRNA gene in sedimentary DNA and cyanobacterial pigments (canthaxanthin, echinenone, myxoxanthophyll and zeaxanthin) analysed using high-performance liquid chromatography in four sediment cores. There were strong positive relationships between the 16S rRNA gene copy concentrations and individual pigment concentrations, but relationships differed among lakes and sediment core depths within lakes. The relationships were more consistent when all pigments were summed, which we attribute to different cyanobacteria species, in different lakes, at different times producing different suites of pigments. Each method had benefits and limitations, which should be taken into consideration during method selection and when interpreting paleolimnological data. We recommend this biphasic approach when making inferences about changes in the entire cyanobacterial community because they yielded complementary information. Our results support the view that molecular methods can yield results similar to traditional paleolimnological proxies when caveats are adequately addressed.

7.
Sci Total Environ ; 812: 152385, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34942258

ABSTRACT

Lakes and their catchments have been subjected to centuries to millennia of exploitation by humans. Efficient monitoring methods are required to promote proactive protection and management. Traditional monitoring is time consuming and expensive, which limits the number of lakes monitored. Lake surface sediments provide a temporally integrated representation of environmental conditions and contain high microbial biomass. Based on these attributes, we hypothesized that bacteria associated with lake trophic states could be identified and used to develop an index that would not be confounded by non-nutrient stressor gradients. Metabarcoding (16S rRNA gene) was used to assess bacterial communities present in surface sediments from 259 non-saline lakes in New Zealand encompassing a range of trophic states from alpine microtrophic lakes to lowland hypertrophic lakes. A subset of lakes (n = 96) with monitoring data was used to identify indicator amplicon sequence variants (ASVs) associated with different trophic states. A total of 10,888 indicator taxa were identified and used to develop a Sediment Bacterial Trophic Index (SBTI), which signficantly correlated (r2 = 0.842, P < 0.001) with the Trophic Lake Index. The SBTI was then derived for the remaining 163 lakes, providing new knowledge of the trophic state of these unmonitored lakes. This new, robust DNA-based tool provides a rapid and cost-effective method that will allow a greater number of lakes to be monitored and more effectively managed in New Zealand and globally. The SBTI could also be applied in a paleolimnological context to investigate changes in trophic status over centuries to millennia.


Subject(s)
Bacteria , Lakes , Bacteria/genetics , Geologic Sediments , Humans , New Zealand , RNA, Ribosomal, 16S
8.
PLoS One ; 16(7): e0254967, 2021.
Article in English | MEDLINE | ID: mdl-34288957

ABSTRACT

Microcystis is a bloom-forming genus of cyanobacteria with some genotypes that produce highly toxic microcystin hepatotoxins. In waterbodies where biological and physical factors are relatively homogenous, toxin quotas (the average amount of toxin per cell), at a single point in time, are expected to be relatively constant. In this study we challenged this assumption by investigating the spatial distribution of microcystin quotas at a single point in time on two separate occasions in a lake with a major Microcystis bloom. Microcystis cell concentrations varied widely across the lake on both sampling occasions (730- and 137-fold) together with microcystin quotas (148- and 362-fold). Cell concentrations and microcystin quotas were strongly positively correlated (R2 = 0.89, P < 0.001, n = 28; R2 = 0.67, P < 0.001, n = 25). Analysis of Microcystis strains using high-throughput sequencing of the 16S-23S rRNA intergenic spacer region showed no relationship between microcystin quota and the relative abundance of specific sequences. Collectively, the results of this study indicate an association between microcystin production and cell density that magnifies the potential for bloom toxicity at elevated cell concentrations.


Subject(s)
Eutrophication , Lakes/microbiology , Microcystins , Microcystis , DNA, Bacterial/genetics , DNA, Intergenic/genetics , DNA, Ribosomal/genetics , Microcystins/genetics , Microcystins/metabolism , Microcystis/genetics , Microcystis/growth & development , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 23S/genetics
9.
Toxins (Basel) ; 13(5)2021 05 05.
Article in English | MEDLINE | ID: mdl-34063025

ABSTRACT

Understanding the toxicity and production rates of the various secondary metabolites produced by Gambierdiscus and cohabitating benthic dinoflagellates is essential to unravelling the complexities associated with ciguatera poisoning. In the present study, a sulphated cyclic polyether, gambierone, was purified from Gambierdiscus cheloniae CAWD232 and its acute toxicity was determined using intraperitoneal injection into mice. It was shown to be of low toxicity with an LD50 of 2.4 mg/kg, 9600 times less toxic than the commonly implicated Pacific ciguatoxin-1B, indicating it is unlikely to play a role in ciguatera poisoning. In addition, the production of gambierone and 44-methylgambierone was assessed from 20 isolates of ten Gambierdiscus, two Coolia and two Fukuyoa species using quantitative liquid chromatography-tandem mass spectrometry. Gambierone was produced by seven Gambierdiscus species, ranging from 1 to 87 pg/cell, and one species from each of the genera Coolia and Fukuyoa, ranging from 2 to 17 pg/cell. The production of 44-methylgambierone ranged from 5 to 270 pg/cell and was ubiquitous to all Gambierdiscus species tested, as well as both species of Coolia and Fukuyoa. The relative production ratio of these two secondary metabolites revealed that only two species produced more gambierone, G. carpenteri CAWD237 and G. cheloniae CAWD232. This represents the first report of gambierone acute toxicity and production by these cohabitating benthic dinoflagellate species. While these results demonstrate that gambierones are unlikely to pose a risk to human health, further research is required to understand if they bioaccumulate in the marine food web.


Subject(s)
Ciguatoxins/toxicity , Dinoflagellida/metabolism , Ethers/toxicity , Animals , Chromatography, Liquid , Ethers/administration & dosage , Ethers/isolation & purification , Female , Injections, Intraperitoneal , Lethal Dose 50 , Mice , Secondary Metabolism , Tandem Mass Spectrometry , Toxicity Tests, Acute
10.
Chemosphere ; 263: 127937, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32828056

ABSTRACT

The cyanobacterium Microcoleus autumnalis grows as thick benthic mats in rivers and is becoming increasingly prevalent around the world. M. autumnalis can produce high concentrations of anatoxins and ingestion of benthic mats has led to multiple dog deaths over the past two decades. M. autumnalis produces a suite of different anatoxin congeners including anatoxin-a (ATX), dihydroanatoxin-a, (dhATX), homoanatoxin-a and dihydrohomoanatoxin-a. Benthic mat samples often contain high levels of dhATX, but there is little toxicology information on this congener. In the present study, natural versions of dhATX and ATX were purified from cyanobacteria to determine the acute toxicity by different routes of administration using mice. Nuclear magnetic resonance spectroscopy was used to confirm the putative structure of dhATX. By intraperitoneal (ip) injection, the median lethal dose (LD50) for dhATX was 0.73 mg/kg, indicating a reduced toxicity compared to ATX (LD50 of 0.23 mg/kg). However, by oral administration (both gavage and feeding), dhATX was more toxic than ATX (gavage LD50 of 2.5 mg/kg for dhATX and 10.6 mg/kg for ATX; feeding LD50 of 8 mg/kg for dhATX and 25 mg/kg for ATX). The relative nicotinic acetylcholine receptor-binding affinities of ATX and dhATX were determined using the Torpedo electroplaque assay which showed consistency with the relative toxicity determined by ip injection. This work highlights that toxicity studies based solely on ip injection may not yield LD50 values that are relevant to those derived via oral administration, and hence, do not provide a good estimate of the risk posed to human and animal health in situations where oral ingestion is the likely route of exposure. The high acute oral toxicity of dhATX, and its abundance in M. autumnalis proliferations, demonstrates that it is an important environmental contaminant that warrants further investigation.


Subject(s)
Cyanobacteria/metabolism , Proline/analogs & derivatives , Tropanes/toxicity , Animals , Bacterial Toxins/toxicity , Bridged Bicyclo Compounds, Heterocyclic/toxicity , Cyanobacteria/chemistry , Cyanobacteria Toxins , Dogs , Humans , Mice , Proline/toxicity , Rivers/chemistry
11.
Toxins (Basel) ; 12(9)2020 09 09.
Article in English | MEDLINE | ID: mdl-32916957

ABSTRACT

(1) Background: Paleolimnological studies use sediment cores to explore long-term changes in lake ecology, including occurrences of harmful cyanobacterial blooms. Most studies are based on single cores, assuming this is representative of the whole lake, but data on small-scale spatial variability of microbial communities in lake sediment are scarce. (2) Methods: Surface sediments (top 0.5 cm) from 12 sites (n = 36) and two sediment cores were collected in Lake Rotorua (New Zealand). Bacterial community (16S rRNA metabarcoding), Microcystis specific 16S rRNA, microcystin synthetase gene E (mcyE) and microcystins (MCs) were assessed. Radionuclide measurements (210Pb, 137Cs) were used to date sediments. (3) Results: Bacterial community, based on relative abundances, differed significantly between surface sediment sites (p < 0.001) but the majority of bacterial amplicon sequence variants (88.8%) were shared. Despite intense MC producing Microcystis blooms in the past, no Microcystis specific 16S rRNA, mcyE and MCs were found in surface sediments but occurred deeper in sediment cores (approximately 1950's). 210Pb measurements showed a disturbed profile, similar to patterns previously observed, as a result of earthquakes. (4) Conclusions: A single sediment core can capture dominant microbial communities. Toxin producing Microcystis blooms are a recent phenomenon in Lake Rotorua. We posit that the absence of Microcystis from the surface sediments is a consequence of the Kaikoura earthquake two years prior to our sampling.


Subject(s)
Biodiversity , Cyanobacteria/metabolism , Geologic Sediments/microbiology , Microcystins/metabolism , Cyanobacteria/classification , Cyanobacteria/genetics , DNA Barcoding, Taxonomic , DNA, Bacterial/genetics , Environmental Monitoring , Harmful Algal Bloom , Lakes , Microbiota , Microcystins/genetics , RNA, Ribosomal, 16S/genetics , Ribotyping
12.
Harmful Algae ; 97: 101853, 2020 07.
Article in English | MEDLINE | ID: mdl-32732047

ABSTRACT

Ciguatera fish poisoning (CFP) is prevalent around the tropical and sub-tropical latitudes of the world and impacts many Pacific island communities intrinsically linked to the reef system for sustenance and trade. While the genus Gambierdiscus has been linked with CFP, it is commonly found on tropical reef systems in microalgal assemblages with other genera of toxin-producing, epiphytic and/or benthic dinoflagellates - Amphidinium, Coolia, Fukuyoa, Ostreopsis and Prorocentrum. Identifying a biomarker compound that can be used for the early detection of Gambierdiscus blooms, specifically in a mixed microalgal community, is paramount in enabling the development of management and mitigation strategies. Following on from the recent structural elucidation of 44-methylgambierone, its potential to contribute to CFP intoxication events and applicability as a biomarker compound for Gambierdiscus spp. was investigated. The acute toxicity of this secondary metabolite was determined by intraperitoneal injection using mice, which showed it to be of low toxicity, with an LD50 between 20 and 38 mg kg-1. The production of 44-methylgambierone by 252 marine microalgal isolates consisting of 90 species from 32 genera across seven classes, was assessed by liquid chromatography-tandem mass spectrometry. It was discovered that the production of this secondary metabolite was ubiquitous to the eight Gambierdiscus species tested, however not all isolates of G. carpenteri, and some species/isolates of Coolia and Fukuyoa.


Subject(s)
Ciguatera Poisoning , Dinoflagellida , Microalgae , Animals , Biomarkers , Chromatography, Liquid , Mice
13.
Harmful Algae ; 97: 101869, 2020 07.
Article in English | MEDLINE | ID: mdl-32732055

ABSTRACT

Toxic cyanobacterial blooms are becoming more prevalent in freshwater systems, increasing the need for monitoring to protect human health. Phycocyanin fluorescence sensors have been developed as tools for providing fast and cost-effective proxy measurements for cyanobacterial biomass. However, poor precision and low sensitivity in many of the probe sensors assessed to-date has restricted their potential for practical application in cyanobacterial monitoring programmes. In the present study, the sensitivity and accuracy of a handheld fluorometer, the CyanoFluor, was assessed using 12 cyanobacterial strains and samples from four different lakes collected weekly for 12 weeks. After the initial measurements, the samples were lysed by sonication, which we hypothesised would reduce inter and intra-specific differences. The CyanoFluor displayed high sensitivity (limit of quantification = 3.5 µg L-1 of phycocyanin) and was able to detect cyanobacterial biovolumes to levels much lower than the threshold levels in current recreational guidelines worldwide. There were strong and significant phycocyanin to biovolume relationships (r2 ≥ 0.88, P < 0.05) for all 12 cyanobacterial cultures. Collectively, strong relationships between phycocyanin fluorescence and cyanobacterial biovolumes were also identified in environmental samples (r2 ≥ 0.78, P < 0.001), although weaker relationships were identified when lakes were analysed separately (r2 = 0.06 - 0.90). There were differences in phycocyanin per biovolume between both cultured strains and lakes, highlighting innate interspecific differences that exist between cyanobacterial species. Lysis of samples consistently reduced variability between technical replicates, in cyanobacteria cultures (up to 87% reduction in sample variability) and environmental samples (71 - 93% reduction), indicating that it would be a useful methodological step to improve the repeatability of results. When guideline thresholds (aligned with currently enforced risk assessment categories) were modelled based on the most successful linear regression model, 74% of samples were assigned to the correct risk category. The sensitivity of the CyanoFluor and accuracy of the phycocyanin threshold models, indicates high potential for this method to be integrated into cyanobacterial monitoring programmes.


Subject(s)
Cyanobacteria , Phycocyanin , Environmental Monitoring , Fluorescence , Lakes
14.
Toxins (Basel) ; 12(4)2020 04 11.
Article in English | MEDLINE | ID: mdl-32290390

ABSTRACT

Toxic metabolites are produced by many cyanobacterial species. There are limited data on toxigenic benthic, mat-forming cyanobacteria, and information on toxic cyanobacteria from Central Asia is even more scarce. In the present study, we examined cyanobacterial diversity and community structure, the presence of genes involved in toxin production and the occurrence of cyanotoxins in cyanobacterial mats from small water bodies in a cold high-mountain desert of Eastern Pamir. Diversity was explored using amplicon-based sequencing targeting the V3-V4 region of the 16S rRNA gene, toxin potential using PCR-based methods (mcy, nda, ana, sxt), and toxins by enzyme-linked immunosorbent assays (ELISAs) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Molecular identification of cyanobacteria showed a high similarity of abundant taxa to Nostoc PCC-73102, Nostoc PCC-7524, Nodularia PCC-935 and Leptolyngbya CYN68. The PCRs revealed the presence of mcyE and/or ndaF genes in 11 samples and mcyD in six. The partial sequences of the mcyE gene showed high sequence similarity to Nostoc, Planktothrix and uncultured cyanobacteria. LC-MS/MS analysis identified six microcystin congeners in two samples and unknown peptides in one. These results suggest that, in this extreme environment, cyanobacteria do not commonly produce microcystins, anatoxins and cylindrospermopsins, despite the high diversity and widespread occurrence of potentially toxic taxa.


Subject(s)
Alkaloids/metabolism , Cold Temperature , Cyanobacteria/metabolism , Desert Climate , Marine Toxins/metabolism , Microbiota , Microcystins/metabolism , Water Microbiology , Cyanobacteria/classification , Cyanobacteria/genetics , Cyanobacteria Toxins , Gene Expression Regulation, Bacterial , Phylogeny
15.
Front Microbiol ; 11: 129, 2020.
Article in English | MEDLINE | ID: mdl-32117151

ABSTRACT

Benthic proliferations of Microcoleus autumnalis (basionym Phormidium autumnale) and closely related taxa are being reported with increasing frequency in streams and rivers worldwide. This species commonly produces the potent neurotoxin anatoxin, and exposure to this has resulted in animal fatalities and human health concerns. Bacterial communities within cyanobacterial assemblages can facilitate processes such as nutrient cycling and are posited to influence cyanobacterial growth and function. However, there is limited knowledge on spatial variability of bacterial communities associated with benthic cyanobacteria and anatoxin content and quotas. In this study, M. autumnalis-dominated mat samples were collected from six sites in two New Zealand streams. Associated bacterial communities were characterized using 16S rRNA metabarcoding, anatoxin content by liquid chromatography-mass spectrometry and anaC copies using droplet digital PCR. Bacterial assemblages differed significantly when amplicon sequence variants were compared between streams and most sites within streams. These differences were associated with conductivity, DRP, DIN, temperature, anatoxin concentration, and quota. Despite the differences in bacterial community composition; at phyla, class and order levels there was high similarity across spatial scales, with Bacteroidetes (ca. 67%) and Proteobacteria (ca. 25%) dominant. There was significant variability in total anatoxin concentrations between sites in both streams (p < 0.001). When the data were converted to anatoxin quotas variability was reduced, suggesting that the relative abundance of toxic genotypes is a key driver of total anatoxin concentrations in mats. This study demonstrates the complexity of microbial communities within M. autumnalis-dominated mats and highlights their likely important role in within-mat nutrient cycling processes.

16.
Freshw Biol ; 65(10): 1824-1842, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-34970014

ABSTRACT

1. This review summarises knowledge on the ecology, toxin production, and impacts of toxic freshwater benthic cyanobacterial proliferations. It documents monitoring, management, and sampling strategies, and explores mitigation options. 2. Toxic proliferations of freshwater benthic cyanobacteria (taxa that grow attached to substrates) occur in streams, rivers, lakes, and thermal and meltwater ponds, and have been reported in 19 countries. Anatoxin- and microcystin-containing mats are most commonly reported (eight and 10 countries, respectively). 3. Studies exploring factors that promote toxic benthic cyanobacterial proliferations are limited to a few species and habitats. There is a hierarchy of importance in environmental and biological factors that regulate proliferations with variables such as flow (rivers), fine sediment deposition, nutrients, associated microbes, and grazing identified as key drivers. Regulating factors differ among colonisation, expansion, and dispersal phases. 4. New -omics-based approaches are providing novel insights into the physiological attributes of benthic cyanobacteria and the role of associated microorganisms in facilitating their proliferation. 5. Proliferations are commonly comprised of both toxic and non-toxic strains, and the relative proportion of these is the key factor contributing to the overall toxin content of each mat. 6. While these events are becoming more commonly reported globally, we currently lack standardised approaches to detect, monitor, and manage this emerging health issue. To solve these critical gaps, global collaborations are needed to facilitate the rapid transfer of knowledge and promote the development of standardised techniques that can be applied to diverse habitats and species, and ultimately lead to improved management.

17.
PLoS One ; 14(12): e0220422, 2019.
Article in English | MEDLINE | ID: mdl-31841562

ABSTRACT

Benthic cyanobacterial proliferations in rivers are have been reported with increasing frequency worldwide. In the Eel and Russian rivers of California, more than a dozen dog deaths have been attributed to cyanotoxin toxicosis since 2000. Periphyton proliferations in these rivers comprise multiple cyanobacterial taxa capable of cyanotoxin production, hence there is uncertainty regarding which taxa are producing toxins. In this study, periphyton samples dominated by the cyanobacterial genera Anabaena spp. and Microcoleus spp. and the green alga Cladophora glomerata were collected from four sites in the Eel River catchment and one site in the Russian River. Samples were analysed for potential cyanotoxin producers using polymerase chain reaction (PCR) in concert with Sanger sequencing. Cyanotoxin concentrations were measured using liquid chromatography tandem-mass spectrometry, and anatoxin quota (the amount of cyanobacterial anatoxins per toxigenic cell) determined using droplet digital PCR. Sequencing indicated Microcoleus sp. and Nodularia sp. were the putative producers of cyanobacterial anatoxins and nodularins, respectively, regardless of the dominant taxa in the mat. Anatoxin concentrations in the mat samples varied from 0.1 to 18.6 µg g-1 and were significantly different among sites (p < 0.01, Wilcoxon test); however, anatoxin quotas were less variable (< 5-fold). Dihydroanatoxin-a was generally the most abundant variant in samples comprising 38% to 71% of the total anatoxins measured. Mats dominated by the green alga C. glomerata contained both anatoxins and nodularin-R at concentrations similar to those of cyanobacteria-dominated mats. This highlights that even when cyanobacteria are not the dominant taxa in periphyton, these mats may still pose a serious health risk and indicates that more widespread monitoring of all mats in a river are necessary.


Subject(s)
Bacterial Toxins/analysis , Cyanobacteria/pathogenicity , Rivers/chemistry , Anabaena/pathogenicity , California , Chlorophyta/genetics , Chlorophyta/metabolism , Chromatography, Liquid , Cyanobacteria/genetics , Cyanobacteria/metabolism , Polymerase Chain Reaction , Proline/analogs & derivatives , Proline/analysis , Water Microbiology
18.
Toxins (Basel) ; 11(8)2019 07 24.
Article in English | MEDLINE | ID: mdl-31344917

ABSTRACT

Understanding of colony specific properties of cyanobacteria in the natural environment has been challenging because sampling methods disaggregate colonies and there are often delays before they can be isolated and preserved. Microcystis is a ubiquitous cyanobacteria that forms large colonies in situ and often produces microcystins, a potent hepatotoxin. In the present study a new cryo-sampling technique was used to collect intact Microcystis colonies in situ by embedding them in a sheet of ice. Thirty-two of these Microcystis colonies were investigated with image analysis, liquid chromatography-mass spectrometry, quantitative polymerase chain reaction and high-throughput sequencing to assess their volume, microcystin quota and internal transcribed spacer (ITS) genotype diversity. Microcystin quotas were positively correlated to colony volume (R2 = 0.32; p = 0.004). Individual colonies had low Microcystis ITS genotype diversity and one ITS operational taxonomic unit predominated in all samples. This study demonstrates the utility of the cryo-sampling method to enhance the understanding of colony-specific properties of cyanobacteria with higher precision than previously possible.


Subject(s)
Microcystins/analysis , Microcystis/isolation & purification , Biodiversity , Chromatography, Liquid , High-Throughput Nucleotide Sequencing , Lakes/microbiology , Microcystis/genetics , New Zealand , Tandem Mass Spectrometry
19.
Toxins (Basel) ; 11(7)2019 07 02.
Article in English | MEDLINE | ID: mdl-31269739

ABSTRACT

Cyanobacterial microcystins (MCs), potent serine/threonine-phosphatase inhibitors, pose an increasing threat to humans. Current detection methods are optimised for water matrices with only a few MC congeners simultaneously detected. However, as MC congeners are known to differ in their toxicity, methods are needed that simultaneously quantify the congeners present, thus allowing for summary hazard and risk assessment. Moreover, detection of MCs should be expanded to complex matrices, e.g., blood and tissue samples, to verify in situ MC concentrations, thus providing for improved exposure assessment and hazard interpretation. To achieve this, we applied two synthetic deuterated MC standards and optimised the tissue extraction protocol for the simultaneous detection of 14 MC congeners in a single ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) run. This procedure was validated using plasma and liver homogenates of mice (male and female) spiked with deuterated MC standards. For proof of concept, tissue and plasma samples from mice i.p. injected with MC-LR and MC-LF were analysed. While MC-LF was detected in all tissue samples of both sexes, detection of MC-LR was restricted to liver samples of male mice, suggesting different toxicokinetics in males, e.g., transport, conjugation or protein binding. Thus, deconjugation/-proteinisation steps should be employed to improve detection of bound MC.


Subject(s)
Microcystins/analysis , Animals , Chromatography, High Pressure Liquid , Deuterium , Female , Liver/chemistry , Liver/metabolism , Male , Mice, Inbred BALB C , Microcystins/blood , Microcystins/pharmacokinetics , Microcystins/standards , Reference Standards , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
20.
Harmful Algae ; 80: 88-95, 2018 12.
Article in English | MEDLINE | ID: mdl-30502816

ABSTRACT

Proliferations of potentially toxic, mat-forming Microcoleus are increasing in streams globally. A range of cyanotoxins are produced by Microcoleus, with the neurotoxic anatoxins (anatoxin-a, dihydro-anatoxin-a, homoanatoxin-a and dihydro-homoanatoxin-a) the most commonly reported. The anatoxins produced by Microcoleus are thought to be largely contained within the cells. More knowledge on whether anatoxins are been released into the overlying stream water is required to better assess health risks to human, animals, and aquatic organisms. Field studies were conducted in three streams experiencing toxic Microcoleus autumnalis (basionym Phormidium autumnale)-dominated proliferations. Samples were collected every 1.5-3 h over a 24- or 26-h sampling period. Water samples were analyzed for total (intracellular and dissolved) and dissolved anatoxins, and time-integrated anatoxin samples were collected using solid phase adsorption tracking technology (SPATT). Anatoxins were detected in all stream water and SPATT samples (max. 0.91 ng mL-1 and 95 ng g-1 of strata-x hr-1). At two sites, anatoxins were largely dissolved, whereas at the third site only total anatoxins could be detected. Temporal variability in anatoxin concentrations was observed, but there were no evident patterns between sampling sites. Linear regression showed a very weakstatistically significant relationship (R2 = 0.24, p = 0.002) between total anatoxin concentrations in water and SPATT, however, when tested per site, only one of the three showed a significant relationship. These results highlight the potential for chronic exposure to anatoxins for humans (i.e., through drinking water) and aquatic organisms in streams with M. autumnalis proliferations. The health implications of this are unknown.


Subject(s)
Bacterial Toxins/analysis , Cyanobacteria/physiology , Marine Toxins/analysis , Microcystins/analysis , Rivers/chemistry , Cyanobacteria/growth & development , Cyanobacteria Toxins , Environmental Monitoring , Linear Models , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...